WAEC Further Mathematics Past Questions & Answers - Page 106

526.

If the points (-1, t -1), (t, t - 3) and (t - 6, 3) lie on the same straight line, find the values of t.

A.

t = -2 and 3

B.

t = 2 and -3

C.

t = 2 and 3

D.

t = -2 and -3

Correct answer is C

For collinear points (points on the same line), the slopes are equal for any 2 points on the line.

Given (-1, t - 1), (t, t - 3), (t - 6, 3), 

\(slope = \frac{(t-3) - (t-1)}{t - (-1)} = \frac{3 - (t-3)}{(t-6) - t} = \frac{3 - (t-1)}{(t-6) - (-1)}\)

Taking any two of the equations above, solve for t.

\(\frac{t - 3 - t + 1}{t + 1} = \frac{6 -t}{-6}\)

\(12 = (6 - t)(t + 1)\)

\(-t^{2} + 5t + 6 - 12 = 0 \implies t^{2} - 5t + 6 = 0\)

Solving, we have t = 2 and 3. 

527.

Find the variance of 1, 2, 0, -3, 5, -2, 4.

A.

\(\frac{52}{7}\)

B.

\(\frac{40}{7}\)

C.

\(\frac{32}{7}\)

D.

\(\frac{27}{7}\)

Correct answer is A

Mean, \(\bar{x} = \frac{1+2+0+(-3)+5+(-2)+4}{7} = \frac{7}{7} = 1\)

\(x\) \((x - \bar{x})\) \((x - \bar{x})^{2}\)
1 0 0
2 1 1
0 -1 1
-3 -4 16
5 4 16
-2 -3 9
4 3 9
Total (n) = 7  

52

Variance = \(\frac{\sum (x - \bar{x)^{2}}{n}\)

= \(\frac{52}{7}\)

528.

In how many ways can 9 people be seated on a bench if only 3 places are available?

A.

1200

B.

504

C.

320

D.

204

Correct answer is B

No explanation has been provided for this answer.

529.

A particle accelerates at 12\(ms^{-2}\) and travels a distance of 250m in 6 seconds. Find the initial velocity of the particle.

A.

5.7\(ms^{-1}\)

B.

6.0\(ms^{-1}\)

C.

60.0\(ms^{-1}\)

D.

77.5\(ms^{-1}\)

Correct answer is A

\(s = ut + \frac{1}{2}at^{2}\)

\(250 = 6u + \frac{1}{2}(12)(6^{2})\)

\(250 = 6u + 216 \implies 6u = 250 - 216 = 34\)

\(u = \frac{34}{6} \approxeq 5.7ms^{-1}\)

530.

For what values of m is \(9y^{2} + my + 4\) a perfect square?

A.

\(\pm {2}\)

B.

\(\pm {3}\)

C.

\(\pm {6}\)

D.

\(+12\)

Correct answer is D

No explanation has been provided for this answer.