JAMB Mathematics Past Questions & Answers - Page 46

226.

Given the matrix \(A = \begin{vmatrix} 3 & -2 \\ 1 & 6 \end{vmatrix}\). Find the inverse of matrix A.

A.

\(\begin{vmatrix} 6 & 2 \\ 1 & 6 \end{vmatrix}\)

B.

\(\begin{vmatrix} \frac{2}{11} & \frac{1}{12}\\ \frac{3}{20} & \frac{1}{10} \end{vmatrix}\)

C.

\(\begin{vmatrix} -3 & 2 \\ -1 & -6 \end{vmatrix}\)

D.

\(\begin{vmatrix} \frac{3}{10} & \frac{1}{10} \\ \frac{-1}{20} & \frac{3}{20}\end{vmatrix}\)

Correct answer is D

\(A = \begin{vmatrix} 3 & -2 \\ 1 & 6 \end{vmatrix}\)

|A| = (3 x 6) - (-2 x 1)

= 18 + 2

= 20.

A\(^{-1}\) = \(\frac{1}{20} \begin{vmatrix} 6 & 2 \\ -1 & 3 \end{vmatrix}\)

= \(\begin{vmatrix} \frac{6}{20} & \frac{2}{20} \\ \frac{-1}{20} & \frac{3}{20} \end{vmatrix}\)

= \(\begin{vmatrix} \frac{3}{10} & \frac{1}{10} \\ \frac{-1}{20} & \frac{3}{20} \end{vmatrix}\)

227.

If \(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 132\), find the value of x.

A.

5

B.

8

C.

6

D.

3

Correct answer is B

\(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 132\)

\(\implies 2 \begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} - (-5) \begin{vmatrix} x & 4 \\ 0 & 2 \end{vmatrix} + 3 \begin{vmatrix} x & 1 \\ 0 & 3 \end{vmatrix} = 132\)

\(2(2 - 12) + 5(2x) + 3(3x) = 132\)

\(-20 + 10x + 9x = 132\)

\(19x = 152\)

\(x = 8\)

228.

If 2x\(^2\) + x - 3 divides x - 2, find the remainder.

A.

7

B.

3

C.

5

D.

6

Correct answer is A

When you divide a polynomial p(x) by (x - a), the remainder = p(a)

i.e. In the case of 2x\(^2\) + x - 3 \(\div\) (x - 2), the remainder = p(2).

= 2(2)\(^2\) + 2 - 3

= 8 + 2 - 3

= 7.

229.

Find the polynomial if given q(x) = x\(^2\) - x - 5, d(x) = 3x - 1 and r(x) = 7.

A.

3x\(^3\) - 4x\(^2\) - 14x + 12

B.

3x\(^2\) + 3x - 7

C.

3x\(^3\) + 4x\(^2\) + 14x - 12

D.

3x\(^2\) - 3x + 4

Correct answer is A

Given q(x) [quotient], d(x) [divisor] and r(x) [remainder], the polynomial is gotten by multiplying the quotient and the divisor and adding the remainder.

i.e In this case, the polynomial = (x\(^2\) - x - 5)(3x - 1) + 7.

= (3x\(^3\) - x\(^2\) - 3x\(^2\) + x - 15x + 5) + 7

= (3x\(^3\) - 4x\(^2\) - 14x + 5) + 7

= 3x\(^3\) - 4x\(^2\) - 14x + 12

230.

Determine the values for which \(x^2 - 7x + 10 \leq 0\)

A.

2 \(\leq\) x \(\geq\) 5

B.

-2 \(\leq\) x \(\leq\) 3

C.

-2 \(\leq\) x \(\geq\) 3

D.

2 \(\leq\) x \(\leq\) 5

Correct answer is D

Explanation

\(x^2 - 7x + 10 \leq 0\)

Solve for \(x^2 - 7x + 10 = 0\)

We have, (x - 5)(x - 2) \(\leq\) 0.

Conditions:

Case 1: (x - 5) \(\leq\) 0, (x - 2) \(\geq\) 0.

\(\implies\) x \(\leq\) 5; x \(\geq\) 2.

2 \(\leq\) x \(\leq\) 5.

Choosing x = 3,

3\(^2\) - 7(3) + 10 = 9 - 21 + 10

= -2 \(\leq\) 0.

\(\therefore\) 2 \(\leq\) x \(\leq\) 5.