If \(\begin{vmatrix}-x & 12 \\-1 & 4 \end{vmatrix} = - 12\), find x.
-6
-2
3
6
Correct answer is D
\(\begin{vmatrix}-x & 12 \\-1 & 4\end{vmatrix} = - 12\)
-4x - (-1)12 = -12
-4x + 12 = -12
-4x = -12 - 12
-4x = - 24
x = 6
8
5
3
2
Correct answer is C
\(\begin{pmatrix}5 & -6 \\2 & -7\end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix}7 \\-11\end{pmatrix}\)
By matrices multiplication;
5x - 6y = 7 ........(1)
2x - 7y = -11 ......(2)
2 x (1): 10x - 12y = 14 .......(3)
5 x (2): 10x - 35y = -55 ......(4)
(3) - (4): 23y = 69
y = 69/23 = 3
A binary operation * is defined by x * y = xy. If x * 2 = 12 - x, find the possible values of x
3,4
3,-4
-3,4
-3,-4
Correct answer is B
x * y = xy
x * 2 = 12 - x
Thus by comparison,
x = x, y = 2
But x * y = x * 2
xy = 12 - x
x2 = 12 - x
x2 + x - 12 = 0
x2 + 4x - 3x - 12 = 0
x(x + 4) - 3(x + 4) = 0
(x - 3)(x + 4) = 0
x - 3 = 0 or x + 4 = 0
So x = 3 or x = -4
What is the common ratio of the G.P. \((\sqrt{10} + \sqrt{5}) + (\sqrt{10} + 2\sqrt{5}) + ... \)?
\(\sqrt{2}\)
\(\sqrt{5}\)
3
5
Correct answer is A
Common ratio r of the G.P is
\(r = \frac{T_n + 1}{T_n} = \frac{T_2}{T_1}\)
\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}}\)
\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}} \times \frac{\sqrt{10} - \sqrt{5}}{\sqrt{10} - \sqrt{5}} \)
\( = \frac{(\sqrt{10})(\sqrt{10}) + (\sqrt{10})(-\sqrt{5}) + (2\sqrt{5})(\sqrt{10}) + (2\sqrt{5})(-\sqrt{5})}{(\sqrt{10})^2 - (\sqrt{5})^2}\)
\(\frac{10 - \sqrt{50} + 2\sqrt{50} - 10}{10 - 5}\)
\(\frac{\sqrt{50}}{5}\)
\(\frac{\sqrt{25 \times 2}}{5}\)
\(\frac{5\sqrt{2}}{5}\)
\(\sqrt{2}\)
The 4th term of an A.P. is 13 while the 10th term is 31. Find the 24th term.
89
75
73
69
Correct answer is C
a + 3d = 13 .......... (1)
a + 9d = 31 .......... (2)
(2) - (1): 6d = 18
d = 18/6 = 3
From (1), a + 3(3) = 13
a + 9 = 13
a = 13 - 9 = 4
Hence,
T24 = a + 23d
T24 = 4 + 23(3)
T24 = 4 + 69
T24 = 73