JAMB Mathematics Past Questions & Answers - Page 340

1,696.

Find the minimum value of y = x2 - 2x - 3

A.

4

B.

1

C.

-1

D.

-4

Correct answer is D

y = x2 - 2x - 3,

Then \(\frac{\delta y}{\delta x} = 2x - 2\)

But at minimum point,\(\frac{\delta y}{\delta x} = 0\),

Which means 2x - 2 = 0

2x = 2

x = 1.

Hence the minimum value of y = x2 - 2x - 3 is;

ymin = (1)2 - 2(1) - 3

ymin = 1 - 2 - 3

ymin = -4

1,697.

If y = cos 3x, find \(\frac{\delta y}{\delta x}\)

A.

\(\frac{1}{3} \sin 3x\)

B.

\(-\frac{1}{3} \sin 3x\)

C.

3 sin 3x

D.

-3 sin 3x

Correct answer is D

y = cos 3x

Let u = 3x so that y = cos u

Now, \(\frac{\delta y}{\delta x} = 3\),

\(\frac{\delta y}{\delta x} = -sin u\)

By the chain rule,

\(\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}\)

\(\frac{\delta y}{\delta x} = (-\sin u) (3)\)

\(\frac{\delta y}{\delta x} = -3 \sin u\)

\(\frac{\delta y}{\delta x} = -3 \sin 3x\)

1,698.

If y = 4x3 - 2x2 + x, find \(\frac{\delta y}{\delta x}\)

A.

8x2 - 2x + 1

B.

8x2 - 4x + 1

C.

12x2 - 2x + 1

D.

12x2 - 4x + 1

Correct answer is D

If y = 4x3 - 2x2 + x, then;

\(\frac{\delta y}{\delta x}\) = 3(4x2) - 2(2x) + 1

= 12x2 - 4x + 1

1,699.

If \(\sin\theta = \frac{12}{13}\), find the value of \(1 + \cos\theta\)

A.

\(\frac{25}{13}\)

B.

\(\frac{18}{13}\)

C.

\(\frac{8}{13}\)

D.

\(\frac{5}{13}\)

Correct answer is B

No explanation has been provided for this answer.

1,700.

Calculate the mid point of the line segment y - 4x + 3 = 0, which lies between the x-axis and y-axis.

A.

\(\begin{pmatrix} 3 & -3 \\ 8 & 2 \end{pmatrix}\)

B.

\(\begin{pmatrix} 3 & 3 \\ 8 & 2 \end{pmatrix}\)

C.

\(\begin{pmatrix} -2 & 2 \\ 2 & 2 \end{pmatrix}\)

D.

\(\begin{pmatrix} -2 & 3 \\ 3 & 2 \end{pmatrix}\)

Correct answer is A

y - 4x + 3 = 0

When y = 0, 0 - 4x + 3 = 0

Then -4x = -3

x = 3/4

So the line cuts the x-axis at point (3/4, 0).

When x = 0, y - 4(0) + 3 = 0

Then y + 3 = 0

y = -3

So the line cuts the y-axis at the point (0, -3)

Hence the midpoint of the line y - 4x + 3 = 0, which lies between the x-axis and the y-axis is;

\([\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2)]\)

\([\frac{1}{2}(\frac{3}{4} + 0), \frac{1}{2}(0 + -3)]\)

\([\frac{1}{2}(\frac{3}{4}), \frac{1}{2}(-3)]\)

\([\frac{3}{8}, \frac{-3}{2}]\)