Find the minimum value of y = x2 - 2x - 3
4
1
-1
-4
Correct answer is D
y = x2 - 2x - 3,
Then \(\frac{\delta y}{\delta x} = 2x - 2\)
But at minimum point,\(\frac{\delta y}{\delta x} = 0\),
Which means 2x - 2 = 0
2x = 2
x = 1.
Hence the minimum value of y = x2 - 2x - 3 is;
ymin = (1)2 - 2(1) - 3
ymin = 1 - 2 - 3
ymin = -4
If y = cos 3x, find \(\frac{\delta y}{\delta x}\)
\(\frac{1}{3} \sin 3x\)
\(-\frac{1}{3} \sin 3x\)
3 sin 3x
-3 sin 3x
Correct answer is D
y = cos 3x
Let u = 3x so that y = cos u
Now, \(\frac{\delta y}{\delta x} = 3\),
\(\frac{\delta y}{\delta x} = -sin u\)
By the chain rule,
\(\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}\)
\(\frac{\delta y}{\delta x} = (-\sin u) (3)\)
\(\frac{\delta y}{\delta x} = -3 \sin u\)
\(\frac{\delta y}{\delta x} = -3 \sin 3x\)
If y = 4x3 - 2x2 + x, find \(\frac{\delta y}{\delta x}\)
8x2 - 2x + 1
8x2 - 4x + 1
12x2 - 2x + 1
12x2 - 4x + 1
Correct answer is D
If y = 4x3 - 2x2 + x, then;
\(\frac{\delta y}{\delta x}\) = 3(4x2) - 2(2x) + 1
= 12x2 - 4x + 1
If \(\sin\theta = \frac{12}{13}\), find the value of \(1 + \cos\theta\)
\(\frac{25}{13}\)
\(\frac{18}{13}\)
\(\frac{8}{13}\)
\(\frac{5}{13}\)
Correct answer is B
No explanation has been provided for this answer.
\(\begin{pmatrix} 3 & -3 \\ 8 & 2 \end{pmatrix}\)
\(\begin{pmatrix} 3 & 3 \\ 8 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -2 & 2 \\ 2 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -2 & 3 \\ 3 & 2 \end{pmatrix}\)
Correct answer is A
y - 4x + 3 = 0
When y = 0, 0 - 4x + 3 = 0
Then -4x = -3
x = 3/4
So the line cuts the x-axis at point (3/4, 0).
When x = 0, y - 4(0) + 3 = 0
Then y + 3 = 0
y = -3
So the line cuts the y-axis at the point (0, -3)
Hence the midpoint of the line y - 4x + 3 = 0, which lies between the x-axis and the y-axis is;
\([\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2)]\)
\([\frac{1}{2}(\frac{3}{4} + 0), \frac{1}{2}(0 + -3)]\)
\([\frac{1}{2}(\frac{3}{4}), \frac{1}{2}(-3)]\)
\([\frac{3}{8}, \frac{-3}{2}]\)