If y = (2x + 2)\(^3\), find \(\frac{\delta y}{\delta x}\)
3(2x +2)2
6(2x +2)
3(2x +2)
6(2x +2)2
Correct answer is D
\(y = (2x + 2)^{3}\)
\(\frac{\mathrm d y}{\mathrm d x} = 3(2x + 2)^{3 - 1} . 2\)
= \(6(2x + 2)^{2}\)
If y = x sin x, find \(\frac{\delta y}{\delta x}\)
sin x - cos x
cos x - x sin x
cos x + x sin x
sin x + x cos x
Correct answer is D
y = x sin x
Where u = x and v = sin x
Then \(\frac{\delta u}{\delta x}\) = 1 and \(\frac{\delta v}{\delta x}\) = cos x
By the chain rule, \(\frac{\delta y}{\delta x} = v\frac{\delta u}{\delta x} + u\frac{\delta v}{\delta x}\)
= (sin x)1 + x cos x
= sin x + x cos x
Find the inverse \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)
\(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & -\frac{5}{2} \end{vmatrix}\)
\(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)
\(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)
\(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)
Correct answer is B
Let A = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)
Then |A| = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\) = 20 - 18 = 2
Hence A-1 = \(\frac{1}{|A|}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)
= \(\frac{1}{2}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \\ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix}\)
= \(\begin{pmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{pmatrix}\)
\(\begin{vmatrix} 7 & 7 \\ 14 & 8 \end{vmatrix}\)
\(\begin{vmatrix} 14 & 8 \\ 7 & 7 \end{vmatrix}\)
\(\begin{vmatrix} 7 & 7 \\ 8 & 14 \end{vmatrix}\)
\(\begin{vmatrix} 8 & 14 \\ 7 & 7 \end{vmatrix}\)
Correct answer is B
2P + Q = 2\(\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 10 & 6 \\ 4 & 2 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 14 & 8 \\ 7 & 7 \end{pmatrix}\)
If a binary operation * is defined by x * y = x + 2y, find 2 * (3 * 4)
24
16
14
26
Correct answer is A
x * y = x + 2y (given)
3 * 4 = 3 + 2(4) = 11
Hence, 2 * (3 * 4) = 2 * 11
= 2 + 2(11)
= 2 + 22
= 24