JAMB Mathematics Past Questions & Answers - Page 327

1,631.

The gradient of the straight line joining the points P(5, -7) and Q(-2, -3) is

A.

\(\frac{1}{2}\)

B.

\(\frac{2}{5}\)

C.

\(-\frac{4}{7}\)

D.

\(-\frac{2}{3}\)

Correct answer is C

PQ = \(\frac{y_1 - y_0}{x_1 - x_0}\) = \(\frac{-3 - (-7)}{-2 - 5}\) = \(\frac{-3 + 7}{-2 - 5}\) = \(\frac{4}{-7}\)

1,632.

Calculate the volume of a cuboid of length 0.76cm, breadth 2.6cm and height 0.82cm.

A.

3.92cm3

B.

2.13cm3

C.

1.97cm3

D.

1.62cm3

Correct answer is D

Volume of cuboid = L x b x h

= 0.76cm x 2.6cm x 0.82cm

= 1.62cm3

1,633.

The angles of a polygon are given by x, 2x, 3x, 4x and 5x respectively. Find the value of x.

A.

24o

B.

30o

C.

33o

D.

36o

Correct answer is D

Since there are 5 angles given, the polygon is a pentagon.

Sum of interior angles of a pentagon = (2(5) - 4) x 90° = 540°

\(\therefore\) x + 2x + 3x + 4x + 5x = 15x

15x = 540°

\(x = \frac{540}{15} = 36°\)

1,634.

Given that I3 is a unit matrix of order 3, find |I3|

A.

-1

B.

0

C.

1

D.

2

Correct answer is C

Recall that a unit matrice is a diagonal matrix in which the elements in the leading diagonal is unity. Therefore,

I3 = \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)

I3 = \(+1\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - 0\begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \)

I3 = +1(1 - 0) - 0(0 - 0) + 0(0 - 0)

= 1(1)

= 1

1,635.

If \(\begin{vmatrix} 5 & 3 \\ x & 2 \end{vmatrix}\) = \(\begin{vmatrix} 3 & 5 \\ 4 & 5 \end{vmatrix}\), find the value of x

A.

3

B.

4

C.

5

D.

7

Correct answer is C

\(\begin{vmatrix} 5 & 3 \\ x & 2 \end{vmatrix}\) = \(\begin{vmatrix} 3 & 5 \\ 4 & 5 \end{vmatrix}\)

10 - 3x = 15 - 20

-3x = 15 - 20 - 10

-3x = -15

x = 5