JAMB Mathematics Past Questions & Answers - Page 326

1,626.

Evaluate \(\int^2_1(x^2 - 4x)dx\)

A.

\(\frac{11}{3}\)

B.

\(\frac{3}{11}\)

C.

\(-\frac{3}{11}\)

D.

\(-\frac{11}{3}\)

Correct answer is D

\(\int^2_1(x^2 - 4x)dx\)

\((\frac{x^3}{3} - \frac{4x^2}{2})\)

substituting integrate values

\([\frac{8}{3} - \frac{4 \times 4}{2}] - [\frac{1}{2} - 2]\)

= \(-\frac{11}{3}\)

1,627.

If y = x2 - \(\frac{1}{x}\), find \(\frac{\delta y}{\delta x}\)

A.

2x - \(\frac{1}{x^2}\)

B.

2x + x2

C.

2x - x2

D.

2x + \(\frac{1}{x^2}\)

Correct answer is D

y = x2 - \(\frac{1}{x}\)

y = x2 - x-1

\(\frac{\delta y}{\delta x}\) = 2x + x-2


\(\frac{\delta y}{\delta x}\) = 2x + \(\frac{1}{x^2}\)

1,628.

If angle \(\theta\) is 135°, evaluate cos\(\theta\)

A.

\(\frac{1}{2}\)

B.

\(\frac{\sqrt{2}}{2}\)

C.

\(-\frac{\sqrt{2}}{2}\)

D.

\(-\frac{1}{2}\)

Correct answer is C

\(\theta\) = 135°

Cos 135° = Cos(90 + 45)°

= cos90° cos45° - sin90° sin45°

= 0cos45° - (1 x \(\frac{\sqrt{2}}{2}\))

= \(-\frac{\sqrt{2}}{2}\)

1,629.

Find the equation of the line through the points (-2, 1) and (-\(\frac{1}{2}\), 4)

A.

y = 2x - 3

B.

y = 2x + 5

C.

y = 3x - 2

D.

y = 2x + 1

Correct answer is B

\(\frac{y - y_1}{x - x_1}\) = \(\frac{y_2 - y_1}{x_2 - x_1}\)

\(\frac{y - 1}{x -  -2}\) = \(\frac{4 - 1}{-\frac{1}{2} + 2}\)

= \(\frac{y - 1}{x + 2}\) = \(\frac{3}{\frac{3}{2}}\)

y = 2x + 5

1,630.

The distance between the point (4, 3) and the intersection of y = 2x + 4 and y = 7 - x is

A.

\(\sqrt{13}\)

B.

\(3\sqrt{2}\)

C.

\(\sqrt{26}\)

D.

\(10\sqrt{5}\)

Correct answer is B

P1 (4, 3), P2 (x, y)

y = 2x + 4 .....(1)

y = 7 - x .....(2)

Substitute (2) in (1)

7 - x = 2x + 4

7 - 4 = 2x + x

3 = 3x

x = 1

Substitute in eqn (2)

y = 7 - x

y = 7 - 1

y = 6

P2 (1, 6)

Distance between 2 points is given as

D = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

D = \(\sqrt{(1 - 4)^2 + (6 - 3)^2}\)

D = \(\sqrt{(-3)^2 + (3)^2}\)

D = \(\sqrt{9 + 9}\)

D = \(\sqrt{18}\)

D = \(\sqrt{9 \times 2}\)

D = \(3\sqrt{2}\)