JAMB Mathematics Past Questions & Answers - Page 32

156.

Simplify \(\sqrt{27}\) + \(\frac{3}{\sqrt{3}}\)

A.

4\(\sqrt{3}\)

B.

\(\frac{4}{\sqrt{3}}\)

C.

3\(\sqrt{3}\)

D.

\(\frac{\sqrt{3}}{4}\)

Correct answer is A

\(\sqrt{27}\) + \(\frac{3}{\sqrt{3}}\)

= \(\sqrt{9 \times 3}\) + \(\frac{3 \times {\sqrt{3}}}{{\sqrt{3}} \times {\sqrt{3}}}\)

= 3\(\sqrt{3}\) + \(\sqrt{3}\)

= 4\(\sqrt{3}\)

157.

Simplify and express in standard form \(\frac{0.00275 \times 0.00640}{0.025 \times 0.08}\)

A.

8.8 x 10-1

B.

8.8 x 10-2

C.

8.8 x 10-3

D.

8.8 x 103

Correct answer is C

\(\frac{0.00275 \times 0.0064}{0.025 \times 0.08}\)

Removing the decimals = \(\frac{275 \times 64}{2500 \times 800}\)

= \(\frac{88}{10^4}\)

88 x 10-4 = 88 x 10-1 x 10-4

= 8.8 x 10-3

158.

Three children shared a basket of mangoes in such a way that the first child took \(\frac{1}{4}\) of the mangoes and the second \(\frac{3}{4}\) of the remainder. What fraction of the mangoes did the third child take?

A.

\(\frac{3}{16}\)

B.

\(\frac{7}{16}\)

C.

\(\frac{9}{16}\)

D.

\(\frac{13}{16}\)

Correct answer is A

You can use any whole numbers (eg. 1. 2. 3) to represent all the mangoes in the basket.

If the first child takes \(\frac{1}{4}\) it will remain 1 - \(\frac{1}{4}\) = \(\frac{3}{4}\)

Next, the second child takes \(\frac{3}{4}\) of the remainder

which is \(\frac{3}{4}\) i.e. find \(\frac{3}{4}\) of \(\frac{3}{4}\)

= \(\frac{3}{4}\) x \(\frac{3}{4}\)

= \(\frac{9}{16}\)

the fraction remaining now = \(\frac{3}{4}\) - \(\frac{9}{16}\)

= \(\frac{12 - 9}{16}\)

= \(\frac{3}{16}\)

159.

At what rate would a sum of N100.00 deposited for 5 years raise an interest of N7.50?

A.

\(\frac{1}{2}\)%

B.

2\(\frac{1}{2}\)%

C.

1.5%

D.

25%

Correct answer is C

Interest I = \(\frac{PRT}{100}\)

∴ R = \(\frac{100 \times 1}{100 \times 5}\)

= \(\frac{100 \times 7.50}{500 \times 5}\)

= \(\frac{750}{500}\)

= \(\frac{3}{2}\)

= 1.5%

160.

Find the mean deviation of 1, 2, 3 and 4

A.

1.0

B.

1.5

C.

2.0

D.

2.5

Correct answer is A

                                          _                                     
Mean deviation = Σ|x - x|
                                  n
_
x = 2.5
= |1 - 2.5| + |2 - 2.5| + |3 - 2.5| + |4 - 2.5|
                               4
= 4/4 = 1