W is directly proportional to U. If W = 5 when U = 3, find U when W = \(\frac{2}{7}\)
\(\frac{6}{35}\)
\(\frac{10}{21}\)
\(\frac{21}{10}\)
\(\frac{35}{6}\)
Correct answer is A
W \(\alpha\) U
W = ku
u = \(\frac{w}{k}\); \(\frac{2}{7}\) x \(\frac{3}{5}\)
= \(\frac{6}{35}\)
Find the standard deviation of 2, 3, 5 and 6
√6
√10
√\(\frac{2}{5}\)
√\(\frac{5}{2}\)
Correct answer is D
\(\begin{array}& x & x - \bar{x} & (x - \bar{x})^2 \\2 & -2 & 4 \\ 3 & -1 & 1 \\ 5 & 1 & 1 \\ 6 & 2 & 4\\ \hline \sum x = 16 & & \sum (x - \bar{x}^2) = 10 \end{array}\)
___________________________________
\(\bar{x}\) = \(\frac{\sum x }{N}\)
= \(\frac{16}{4}\)
= 4
S = \(\sqrt{\frac {(x - \bar{x})^2}{N}}\)
= \(\sqrt{\frac {(10)}{4}}\)
= \(\sqrt{\frac {(5)}{2}}\)
If three unbiased coins are tossed, find the probability that they are all heads
\(\frac{1}{2}\)
\(\frac{1}{3}\)
\(\frac{1}{9}\)
\(\frac{1}{8}\)
Correct answer is D
P(H) = \(\frac{1}{2}\) and P(T) = \(\frac{1}{2}\)
Using the binomial prob. distribution,
(H + T)3 = H3 + 3H2T1 + 3HT2 + T3
Hence the probability that three heads show in a toss of the three coins is H3
= (\(\frac{1}{2}\))3
= \(\frac{1}{8}\)
In how many ways can a committee of 2 women and 3 men be chosen from 6 men and 5 women?
100
200
30
50
Correct answer is B
A committee of 2 women and 3 men can be chosen from 6 men and 5 women, in \(^{5}C_{2}\) x \(^{6}C_{3}\) ways
= \(\frac{5!}{(5 - 2)!2!} \times {\frac{6!}{(6 - 3)!3!}}\)
= \(\frac{5!}{3!2!} \times {\frac{6!}{3 \times 3!}}\)
= \(\frac{5 \times 4 \times 3!}{3! \times 2!} \times {\frac{6 \times 5 \times 4 \times 3!}{3! \times 3!}}\)
= \(\frac{5 \times 4}{1 \times 2} \times {\frac{6 \times 5 \times 4}{1 \times 2 \times 3}}\)
= 10 x \(\frac{6 \times 20}{6}\)
= 200
Evaluate \(\int^{2}_{0}(x^3 + x^2)\)dx.
4\(\frac{5}{6}\)
6\(\frac{2}{3}\)
1\(\frac{5}{6}\)
2\(\frac{5}{6}\)
Correct answer is B
\(\int^{2}_{0}(x^3 + x^2)\)dx = \(\int^{2}_{0}\)(\(\frac{x^4}{4} + {\frac {x^3}{3}}\))
= (\(\frac{2^4}{4} + {\frac {2^3}{3}}\)) - (\(\frac{0^4}{4} + {\frac {0^3}{3}}\))
= (\(\frac{16}{4} + {\frac {8}{3}}\)) - 0
= \(\frac{80}{12}
= {\frac {20}{3}}\) or 6\(\frac{2}{3}\)