\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & -1 \\ -4 & 1 & 1\end{pmatrix}\)
\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}\)
\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & 1 \\ -4 & 1 & 1\end{pmatrix}\)
\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & 1 & 1 \\ -4 & -1 & 1\end{pmatrix}\)
Correct answer is B
2(1) - (-1) = 3 2(2) - (0) = 4 2(-1) - (2) = -4
2(0) - (1) = -1 2(-1) - (-1) = -1 2(0) - (-1) = 1
2(1) - 2 = 0 2(0) - (-1) = 1 2(1) - (1) = 1
\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}\)
-4
45
4,2
2
Correct answer is C
2p x 1 + 8 x 2 = 24
\(\to\) 4p = 24 - 8 = 16,
p = 4
3 x 1 + -5q x 2 = -17
\(\to\) -10q = -17 - 3
-10q = -20
q = 2
14 years
20 years
12 years
16 years
Correct answer is D
M + L = 28,
M : L = 600 : 800
= 3 : 4
\(\frac{M}{L}\) = \(\frac{3}{4}\) \(\to\) M = \(\frac{3}{4}\)L
\(\frac{3}{4}\)L + L = 28
\(\frac{7L}{4}\) = 28
L = \(\frac{4 \times 28}{7}\)
= 16
If y = (1 + x)2, find \(\frac{dy}{dx}\)
x - 1
2 + 2x
1 + 2x
2x - 1
Correct answer is B
If y = (1 + x)2, find \(\frac{dy}{dx}\)
y = (1 + x)2
\(\frac{dy}{dx}\) = 2(1 + x)
= 2 + 2x
184m
185m
186m
187m
Correct answer is D
Tan 20° = \(\frac{68m}{x}\)
x tan 20° = 68
x = \(\frac{68}{tan 20}\) = \(\frac{68}{0.364}\)
x = 186.8
= 187m