JAMB Mathematics Past Questions & Answers - Page 308

1,536.

If x = \(\begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ -1 & 0 & 1\end{pmatrix}\) and y = \(\begin{pmatrix} -1 & 1 & 2 \\ 0 & -1 & -1 \\ 2 & -1 & 1\end{pmatrix}\)
find 2x - y

A.

\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & -1 \\ -4 & 1 & 1\end{pmatrix}\)

B.

\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}\)

C.

\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -3 & 1 \\ -4 & 1 & 1\end{pmatrix}\)

D.

\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & 1 & 1 \\ -4 & -1 & 1\end{pmatrix}\)

Correct answer is B

2(1) - (-1) = 3      2(2) - (0) = 4          2(-1) - (2) = -4

2(0) - (1) = -1      2(-1) - (-1) = -1      2(0) - (-1) = 1

2(1) - 2 = 0         2(0) - (-1) = 1         2(1) - (1) = 1

\(\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 1 \\ -4 & 1 & 1\end{pmatrix}\)

1,537.

Find p, q for which \(\begin{pmatrix} 2p & 8 \\ 3 & -5q \end{pmatrix}\)\(\begin{pmatrix} 1 \\ 2\end{pmatrix}\) = \(\begin{pmatrix}24 \\ -17\end{pmatrix}\)

A.

-4

B.

45

C.

4,2

D.

2

Correct answer is C

2p x 1 + 8 x 2 = 24

\(\to\) 4p = 24 - 8 = 16,

p = 4

3 x 1 + -5q x 2 = -17

\(\to\) -10q = -17 - 3

-10q = -20

q = 2

1,538.

The sum of the ages of Musa and Lawal is 28 years. After sharing a certain sum of money in the ratio of their ages, Musa gets N600 and Lawal N800. How old is Lawal?

A.

14 years

B.

20 years

C.

12 years

D.

16 years

Correct answer is D

M + L = 28,

M : L = 600 : 800

= 3 : 4

\(\frac{M}{L}\) = \(\frac{3}{4}\) \(\to\) M = \(\frac{3}{4}\)L

\(\frac{3}{4}\)L + L = 28

\(\frac{7L}{4}\) = 28

L = \(\frac{4 \times 28}{7}\)

= 16

1,539.

If y = (1 + x)2, find \(\frac{dy}{dx}\)

A.

x - 1

B.

2 + 2x

C.

1 + 2x

D.

2x - 1

Correct answer is B

If y = (1 + x)2, find \(\frac{dy}{dx}\)

y = (1 + x)2

\(\frac{dy}{dx}\) = 2(1 + x)

= 2 + 2x

1,540.

A student sitting on a tower 68 metres high observes his principal's car at the angle of depression of 20°. How far is the car from the bottom of the tower to the nearest metre?

A.

184m

B.

185m

C.

186m

D.

187m

Correct answer is D

Tan 20° = \(\frac{68m}{x}\)

x tan 20° = 68

x = \(\frac{68}{tan 20}\) = \(\frac{68}{0.364}\)

x = 186.8

= 187m