JAMB Mathematics Past Questions & Answers - Page 297

1,481.

Let f(x) = 2x + 4 and g(x) = 6x + 7 here g(x) > 0. Solve the inequality \(\frac{f(x)}{g(x)}\) < 1

A.

x < - \(\frac{3}{4}\)

B.

x > - \(\frac{4}{3}\)

C.

x > - \(\frac{3}{4}\)

D.

x > - 12

Correct answer is C

\(\frac{f(x)}{g(x)}\) < 1

∴ \(\frac{2x +4}{6x + 7}\) < 1

= 2x + 4 < 6x + 7

= 6x + 7 > 2x + 4

= 6x - 2x > 4 - 7

= 4x > -3

∴ x > -\(\frac{3}{4}\)

1,483.

What value of g will make the expression 4x2 - 18xy + g a perfect square?

A.

9

B.

\(\frac{9y^2}{4}\)

C.

\(81y^2\)

D.

\(\frac{18y^2}{4}\)

Correct answer is D

4x2 - 18xy + g = g \(\to\) (\(\frac{18y}{4}\))2

= \(\frac{18y^2}{4}\)

1,484.

Make F the subject of the formula t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

A.

\(\frac{gv-t^2}{gt^2}\)

B.

\(\frac{gt^2}{gv-t^2}\)

C.

\(\frac{v}{\frac{1}{t^2} - \frac{1}{g}}\)

D.

\(\frac{gv}{t^2 - g}\)

Correct answer is B

t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

t2 = \(\frac{v}{\frac{1}{f} + \frac{1}{g}}\)

= \(\frac{vfg}{ftg}\)

\(\frac{1}{f} + \frac{1}{g}\) = \(\frac{v}{t^2}\)

= (g + f)t2 = vfg

gt2 = vfg - ft2

gt2 = f(vg - t2)

f = \(\frac{gt^2}{gv-t^2}\)

1,485.

Find the minimum value of X2 - 3x + 2 for all real values of x

A.

-\(\frac{1}{4}\)

B.

-\(\frac{1}{2}\)

C.

\(\frac{1}{4}\)

D.

\(\frac{1}{2}\)

Correct answer is A

y = X2 - 3x + 2, \(\frac{dy}{dx}\) = 2x - 3

at turning pt, \(\frac{dy}{dx}\) = 0

∴ 2x - 3 = 0

∴ x = \(\frac{3}{2}\)

\(\frac{d^2y}{dx^2}\) = \(\frac{d}{dx}\)(\(\frac{d}{dx}\))

= 270

∴ ymin = 2\(\frac{3}{2}\) - 3\(\frac{3}{2}\) + 2

= \(\frac{9}{4}\) - \(\frac{9}{2}\) + 2

= -\(\frac{1}{4}\)