Without using table, solve the equation 8x-2 = \(\frac{2}{25}\)
4
6
8
10
Correct answer is D
8x-2 = \(\frac{2}{25}\)
= 200x-2 = 2
= 100x-2 = 1
x-2 = \(\frac{1}{100}\)
x-2 = 10-2
x = 10
Evaluate \(\frac{log_5 (0.04)}{log_3 18 - log_3 2}\)
1
-1
\(\frac{2}{3}\)
-\(\frac{2}{3}\)
Correct answer is B
\(\frac{log_5 0.04}{log_3 18 - log_3 2}\)
= \(\frac{log_5 0.04}{log_3(\frac{18}{2})}\)
= \(\frac{log_5 0.04}{log_3 9}\)
= \(\frac{-2}{2}\)
= -1
Let log5 0.04 = x
5x = 0.04
x = \(\frac{4}{100}\) = 5-2
Let log3 9 = z
32 = 32
z = 3
Evaluate \(\frac{0.36 \times 5.4 \times 0.63}{4.2 \times 9.0 \times 2.4}\)
0.013
0.014
0.14
0.13
Correct answer is B
\(\frac{0.36 \times 5.4 \times 0.63}{4.2 \times 9.0 \times 2.4}\)
= \(\frac{36}{420} \times \frac{54}{90} \times \frac{63}{240}\)
= \(\frac{6}{70} \times \frac{18}{30} \times \frac{21}{80}\)
= \(\frac{27}{2000}\)
= 0.0135
\(\approx\) = 0.014
Evaluate \(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)
\(\frac{28}{39}\)
\(\frac{13}{39}\)
\(\frac{39}{28}\)
\(\frac{84}{13}\)
Correct answer is A
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} - \frac{10}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-1}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-2 + 15}{20})]\)
= \(\frac{1}{3} \div [\frac{5}{7} \times \frac{13}{20}]\)
\(\frac{1}{3} + [\frac{13}{28}]\) = \(\frac{1}{3} \times \frac{28}{13}\)
= \(\frac{28}{39}\)
29
26
25
24
Correct answer is A
Let the sum of the 12 numbers be x and the 13th number be y.
\(\frac{x}{12} = 3 \implies x = 36\)
\(\frac{36 + y}{13} = 5 \implies 36 + y = 65\)
\(y = 65 - 36 = 29\)