If x + 1 is a factor of x3 + 3x2 + kx + 4, find the value of k
6
-6
8
-8
Correct answer is A
x + 1 is a factor of x3 + 3x2 + kx + 4
Let f(x) = x3 + 3x2 + kx + 4
∴ f(-1) = (-1)3 + 3(-1)2 + k(-1) + 4 = 0
-1 + 3 - k + 4 = 0
∴ k = 6
14.00
120.00
140.00
160.00
Correct answer is D
Let the amounts invested at 4% and 5% respectively be x and y.
\(\therefore x + y = 280 ... (i)\)
Interest on x = \(\frac{x \times 4 \times 1}{100} = 0.04x\)
Interest on y = \(\frac{y \times 5 \times 1}{100} = 0.05y\)
\(\therefore 0.04x + 0.05y = 12.80\)
\(\implies 4x + 5y = 1280 ... (ii)\)
From (i), \(x = 280 - y\).
Put into (ii), \(4(280 - y) + 5y = 1280\)
\(1120 - 4y + 5y = 1280\)
\(1120 + y = 1280 \implies y = 1280 - 1120 = N160\)
\(\therefore\) N160 was invested at the rate of 5% per annum.
Make t the subject of formula S = ut + \(\frac{1}{2} at^2\)
\(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))
\(\frac{1}{a}\) {u \(\pm\) (U2 - 2as)}
\(\frac{1}{a}\) {u \(\pm\) \(\sqrt{2as}\)}
\(\frac{1}{a}\) {-u + \(\sqrt{( 2as)}\)}
Correct answer is A
Given S = ut + \(\frac{1}{2} at^2\)
S = ut + \(\frac{1}{2} at^2\)
∴ 2S = 2ut + at2
= at2 + 2ut - 2s = 0
t = \(\frac{-2u \pm 4u^2 + 2as}{2a}\)
= -2u \(\pi\) \(\frac{\sqrt{u^2 4u^2 + 2as}}{2a}\)
= \(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))
Solve the equation: \(y - 11\sqrt{y} + 24 = 0\)
8, 3
64, 9
6, 4
9, -8
Correct answer is B
\(y - 11\sqrt{y} + 24 = 0 \implies y + 24 = 11\sqrt{y}\)
Squaring both sides,
\(y^{2} + 48y + 576 = 121y\)
\(y^{2} + 48y - 121y + 576 = 0 \implies y^{2} - 73y + 576 = 0\)
\(y^{2} - 64y - 9y + 576 = 0\)
\(y(y - 64) - 9(y - 64) = 0\)
\((y - 9)(y - 64) = 0\)
\(\therefore \text{y = 64 or y = 9}\)
Factorize \(9p^2 - q^2 + 6qr - 9r^2\)
(3p - 3q + r)(3p - q - 3r)
(6p - 3q - 3r)(3p - q - 4r)
(3p - q + 3r)(3p + q - 3r)
(3q - p + 3r)(3q - p + 3r)
Correct answer is C
\(9p^{2} - q^{2} + 6qr - 9r^{2}\)
= \(9p^{2} - (q^{2} - 6qr + 9r^{2})\)
= \(9p^{2} - (q^{2} - 3qr - 3qr + 9r^{2})\)
= \(9p^{2} - (q(q - 3r) - 3r(q - 3r))\)
= \(9p^{2} - (q - 3r)^{2}\)
= \((3p + (q - 3r))(3p - (q - 3r))\)
= \((3p + q - 3r)(3p - q + 3r)\)