48
24
20
10
Correct answer is B
= \((n - 1)!\) ways.
= \((5 - 1)! \) ways
= 24 ways.
\(\frac{1}{96}\)
\(\frac{1}{8}\)
\(\frac{5}{6}\)
\(\frac{11}{12}\)
Correct answer is D
Prob of P = \(\frac{3}{4}\)
Prob of Q = \(\frac{1}{6}\)
Prob of both P or Q = \(\frac{3}{4} + \frac{1}{6} = \frac{11}{12}\)
Two perfect dice are thrown together, Determine the probability of obtaining a total score of 8
\(\frac{1}{12}\)
\(\frac{5}{36}\)
\(\frac{1}{6}\)
\(\frac{7}{36}\)
Correct answer is B
\(\begin{array}{c|c} & & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline a & 1 & 1, 1 & 1, 2 & 1, 3 & 1, 4 & 1, 5 & 1, 6\\\hline & 2 & 1,1 & 2, 2 & 2, 3 & 2, 4 & 2, 5 & 2, 6 \\\hline B & 3 & 3, 1 & 3, 2 & 3, 3 & 3, 4 & 3, 5 & 3, 6\\\hline & 4 & 4 , 1 & 4, 2 & 4, 3 & 4, 4 & 4, 5 & 4, 6\\\hline Die & 5 & 5, 1 & 5, 2 & 5, 3 & 5, 4 & 5, 5 & 5, 6 \\\hline & 6 & 6, 1 & 6, 2 & 6, 3 & 6, 4 & 6, 5 & 6, 6\end{array}\)
Probability of obtaining total score of 8 = \(\frac{5}{36}\)
If the scores of 3 students in a test are 5, 6 and 7, find the standard deviation of their scores
\(\frac{2}{3}\)
\(\frac{2}{3}\sqrt{3}\)
\(\sqrt{\frac{2}{3}}\)
\(\sqrt{\frac{3}{2}}\)
Correct answer is C
(x) = \(\frac{5 + 6 + 7}{3}\)
= \(\frac{18}{3}\)
= 6
\(\begin{array}{c|c} scores(X) & \text{d = (x - x) deviation} & (deviation)^2\\\hline 5 & 5 - 6 & 1\\ 6 & 6 - 6 & 0 \\ 7 & 7 - 6 & 1\\ \hline & & 2\end{array}\)
S.D \(\sqrt{\frac{\sum d^2}{n}}\) where d = deviation = (x - x)
= \(\sqrt{\frac{2}{3}}\)
2, 1
1, 2
1, 5
5, 2
Correct answer is B
From the table, the mode = 1.
The median = 2.