If log\(_{10}\) 2 = m and log\(_{10}\) 3 = n, find log\(_{10}\) 24 in terms of m and n.
3m + n
m + 3n
4mn
3mn
Correct answer is A
log\(_{10}\) 24 = log\(_{10}\) 8 \(\times\) log\(_{10}\) 3
where log\(_{10}\) 8 = 3 log\(_{10}\) 2 = 3 \(\times\) m
and log\(_{10}\) 3 = n
: log\(_{10}\) 24 = 3m + n
13
24
12
11
Correct answer is C
2\(^{√2x + 1}\) = 32
2\(^{√2x + 1}\) = 2\(^5\)
√2x + 1 = 5
square both sides
2x + 1 = 5\(^2\)
2x + 1 = 25
2x = 25 - 1
2x = 24
x = \(\frac{24}{2}\)
x = 12
Simplify: (11\(_{two}\))\(^2\)
1001\(_2\)
1101\(_2\)
101\(_2\)
10001\(_2\)
Correct answer is A
(11\(_{two}\))\(^2\) = (11\(_2\) \(\times\) (11\(_2\))
= \({1 \times 2^1 + 1 \times 2^0} \times ({1 \times 2^1 + 1 \times 2^0})\)
= \({1 \times 2 + 1 \times 1} \times ({1 \times 2 + 1 \times 1})\)
= \({2 + 1} \times ({2 + 1})\)
= 3 \(\times\) 3
= 9\(_{10}\) or
1001\(_2\) from
2 | 9 |
2 | 4 r1 |
2 | 2 r0 |
2 | 1 r0 |
0 r1 |
Correct 0.007985 to three significant figures.
0.0109
0.0800
0.00799
0.008
Correct answer is C
l = -12, k = -6
l = -2 , k = 1
l = -2 , k = -1
l = 0, k = 1
Correct answer is A
Given (x + 2) and (x - 1), i.e. x = -2 or +1
when x = -2
L(-2) + 2k(-2)\(^2\) + 24 = 0
f(-2) = -2L + 8k = -24...(i)
And x = 1
L(1) + 2k(1) + 24 = 0
f(1):L + 2k = -24...(ii)
Subst, L = -24 - 2k in eqn (i)
-2(-24 - 2k) + 8k = -24
+48 + 4k + 8k = -24
12k = -24 - 48 = -72
k = \(frac{-72}{12}\)
k = -6
where L = -24 - 2k
L = -24 - 2(-6)
L = -24 + 12
L = -12
That is; K = -6 and L = -12