JAMB Mathematics Past Questions & Answers - Page 255

1,271.

Solve the equation (x - 2) (x - 3) = 12

A.

2, 3

B.

3, 6

C.

-1, 6

D.

1, -6

Correct answer is C

(x - 2) (x - 3) = 12

x2 - 3x - 2x + 6 = 12

x2 - 5x - 6 = 0

(x +1)(x - 6) = 0

x = -1 or 6

1,272.

What is the nth term of the progression 27, 9, 3,......?

A.

27\(\frac{1}{3}\) n - 1

B.

3n + 2

C.

27 + 18(n - 1)

D.

27 + 6(n - 1)

Correct answer is A

Given 27, 9, 3,......this is a G.P

r = \(\frac{9}{27}\)

= \(\frac{1}{3}\)

T = arn - 1

= 27\(\frac{1}{3}\) n - 1

1,273.

Find the positive number n, such that thrice its square is equal to twelve times the number

A.

1

B.

2

C.

3

D.

4

Correct answer is D

3n2 = 12n

= 3n2 - 12n = 0

= 3n(n - 4) = 0

∴ n = 4

1,274.

Find the range of values of x which satisfy the inequality \(\frac{x}{2}\) + \(\frac{x}{3}\) + \(\frac{x}{4}\) < 1

A.

x < \(\frac{12}{13}\)

B.

x < 13

C.

x < 9

D.

\(\frac{13}{12}\)

Correct answer is A

\(\frac{x}{2}\) + \(\frac{x}{3}\) + \(\frac{x}{4}\)< 1

= \(\frac{6x + 4x + 3x < 12}{12}\)

i.e. 13 x < 12 = x < \(\frac{12}{13}\)

1,275.

Find the two values of y which satisfy the simultaneous equation 3x + y = 8, x\(^2\) + xy = 6.

A.

-1 and 5

B.

-5 and 1

C.

1 and 5

D.

1 and 1

Correct answer is A

\(3x + y = 8 ... (i)\)

\(x^{2} + xy = 6 ... (ii)\)

From (i), \(y = 8 - 3x\)

From (ii), \(xy = 6 - x^{2} \implies y = \frac{6 - x^{2}}{x}\)

Equating the two values of y, we have

\(8 - 3x = \frac{6 - x^{2}}{x} \implies x(8 - 3x) = 6 - x^{2}\)

\(8x - 3x^{2} = 6 - x^{2} \implies 6 - x^{2} - 8x + 3x^{2} = 0\)

\(2x^{2} - 8x + 6 = 0\)

\(x^{2} - 4x + 3 = 0\)

\(x^{2} - 3x - x + 3 = 0 \implies x(x - 3) - 1(x - 3) = 0\)

\((x - 1)(x - 3) = 0 \therefore \text{x = 1 or 3}\)

\(y = 8 - 3x \)

When x = 1, \(y = 8 - 3(1) = 5\)

When x = 3, \(y = 8 - 3(3) = -1\)

\(\therefore \text{y = -1 or 5}\)