JAMB Mathematics Past Questions & Answers - Page 254

1,266.

Find the sum of the first 20 terms in an arithmetic progression whose first term is 7 and last term is 117.

A.

2480

B.

1240

C.

620

D.

124

Correct answer is B

Given the first and last term of an A.P, the sum of the terms is given by

\(S_{n} = \frac{n}{2} [a + l]\)

where a = first term; l = last term and n = number of terms.

\(\therefore S_{20} = \frac{20}{2} [7 + 117]\)

= \(10 (124)\)

= 1240

1,267.

At what value of x is the function y = x2 - 2x - 3 minimum?

A.

1

B.

-1

C.

-4

D.

4

Correct answer is A

For y = ax2 - bx + c for minimum y

\(\frac{dy}{dx}\) = 2x - 2

= \(\frac{dy}{dx}\) = 0

∴ 2x - 2 = 0

x = 1

1,268.

Find the gradient of the line passing through the points (-2, 0) and (0, -4)

A.

2

B.

-4

C.

-2

D.

4

Correct answer is C

Given (-2, 0) and (0, -4)

Gradient = \(\frac{-4 - 0}{0 - (-2)}\)

= \(\frac{-4}{2}\)

= -2

1,269.

Evaluate x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\)

A.

(x2 - 1)-\(\frac{1}{2}\)

B.

(x2 - 1)1

C.

(x2 - 1)

D.

(x2 - 1)-1

Correct answer is A

x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\) = \(\frac{x^2}{(x^2 - 1)^\frac{1}{2}}\) - \(\frac{(x^2 - 1)^\frac{1}{2}}{1}\)

= \(\frac{x^2 - (x^2 - 1)}{(x^2 - 1) ^\frac{1}{2}}\)

= \(\frac{x^2 - x^2 + 1}{(x^2 - 1)^\frac{1}{2}}\)

= (x2 - 1)-\(\frac{1}{2}\)

1,270.

Simplify \(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)

A.

-2x - 2\(\sqrt{x (1 + x)}\)

B.

1 + 2x + 2\(\sqrt{x (1 + x)}\)

C.

\(\sqrt{x (1 + x)}\)

D.

1 + 2x - 2\(\sqrt{x (1 + x)}\)

Correct answer is B

\(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)

= \((\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}) (\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}})\)

= \(\frac{(1 + x) + \sqrt{x(1 + x)} + \sqrt{x(1 + x)} + x}{(1 + x) - x}\)

= \(\frac{1 + 2x + 2\sqrt{x(1 + x)}}{1}\)

= \(1 + 2x + 2\sqrt{x(1 + x)}\)