JAMB Mathematics Past Questions & Answers - Page 253

1,261.

Simplify \(\cos^{2} x (\sec^{2} x + \sec^{2} x \tan^{2} x)\)

A.

tan x

B.

tanx secx

C.

\(\sec^2 x\)

D.

cosec2x

Correct answer is C

\(\cos^{2} x (\sec^{2} x + \sec^{2} x \tan^{2} x)\)

= \(\cos^{2} x \sec^{2} x + \cos^{2} x \sec^{2} x \tan^{2} x\)

= \(1 + \tan^{2} x\)

= \(1 + \frac{\sin^{2} x}{\cos^{2} x}\)

= \(\frac{\cos^{2} x + \sin^{2} x}{\cos^{2} x}\)

= \(\frac{1}{\cos^{2} x} = \sec^{2} x\)

1,262.

A flagstaff stands on the top of a vertical tower. A man standing 60 m away from the tower observes that the angles of elevation of the top and bottom of the flagstaff are 64o and 62o respectively. Find the length of the flagstaff.

A.

60 (tan 62o - tan 64o)

B.

60 (cot 64o - cot 62o)

C.

60 (cot 62o - cot 64o)

D.

60 (tan 64o - tan 62o)

Correct answer is D

\(\frac{BC}{60}\) = \(\frac{tan 62}{1}\)

BC = 60 tan 62

\(\frac{AC}{60}\) = \(\frac{tan 62}{1}\)

AC = 60 tan 64

AB = AC - BC

= 60(tan 64o - tan 62o)

1,263.

If the exterior angles of a pentagon are x°, (x + 5)°, (x + 10)°, (x + 15)° and (x + 20)°, find x

A.

118o

B.

72o

C.

62o

D.

36o

Correct answer is C

The sum of the exterior angles of a regular polygon = 360°.

\(\therefore x + (x + 5) + (x + 10) + (x + 15) + (x + 20) = 360°\)

\(5x + 50 = 360° \implies 5x = 360° - 50° = 310°\)

\(x = \frac{310°}{5} = 62°\)

1,264.

One angle of a rhombus is 60o. The shorter of the two diagonals is 8cm long. Find the length of the longer one.

A.

8\(\sqrt{3}\)

B.

\(\frac{16}{\sqrt{3}}\)

C.

\(\sqrt{3}\)

D.

\(\frac{10}{\sqrt{3}}\)

Correct answer is A

\(\frac{x}{4}\) = \(\frac{\tan 60}{1}\)

x = 4 tan60

= 4\(\sqrt{3}\)

BD = 2x

= 8\(\sqrt{3}\)

1,265.

The area of a square is 144 sq cm. Find the length of its diagonal

A.

11\(\sqrt{3cm}\)

B.

12cm

C.

12\(\sqrt{2cm}\)

D.

13cm

Correct answer is C

BD = \(\sqrt{x^2 + x^2}\)

= \(\sqrt{12^2 + 12^2}\)

= \(\sqrt{144 + 144}\)

= 2(144)

= 12\(\sqrt{2cm}\)