Correct 241.34(3 x 10-\(^3\))\(^2\) to 4 significant figures
0.0014
0.001448
0.0022
0.002172
Correct answer is D
first work out the expression and then correct the answer to 4 s.f = 241.34..............(A)
(3 x 10-\(^3\))\(^2\)............(B)
= 3\(^2\)x\(^2\)
= \(\frac{1}{10^3}\) x \(\frac{1}{10^3}\)
(Note that x\(^2\) = \(\frac{1}{x^3}\))
= 24.34 x 3\(^2\) x \(\frac{1}{10^6}\)
= \(\frac{2172.06}{10^6}\)
= 0.00217206
= 0.002172(4 s.f)
The H.C.F. of a2bx + ab2x and a2b - b2 is
b
a + b
b(a \(\div\) b)
abx(a2 - b2)
Correct answer is B
a2bx + ab2x; a2b - b2
abx(a + b); b(a2 - b2)
b(a + b)(a + b)
∴ H.C.F. = (a + b)
Simplify \(\frac{4\frac{3}{4} - 6\frac{1}{4}}{4\frac{1}{5} \text{ of } 1\frac{1}{4}}\)
-7\(\frac{7}{8}\)
\(\frac{-2}{7}\)
\(\frac{-10}{21}\)
\(\frac{10}{21}\)
Correct answer is B
\(\frac{4\frac{3}{4} - 6\frac{1}{4}}{4\frac{1}{5} \text{ of } 1\frac{1}{4}}\)
\(\frac{19}{4}\) - \(\frac{25}{4}\)............(A)
\(\frac{21}{5}\) x \(\frac{5}{4}\).............(B)
Now work out the value of A and the value of B and then find the value \(\frac{A}{B}\)
A = \(\frac{19}{4}\) - \(\frac{25}{4}\)
= \(\frac{-6}{4}\)
B = \(\frac{21}{5}\) x \(\frac{5}{4}\)
= \(\frac{105}{20}\)
= \(\frac{21}{4}\)
But then \(\frac{A}{B}\) = \(\frac{-6}{4}\) \(\div\) \(\frac{21}{4}\)
= \(\frac{-6}{4}\) x \(\frac{4}{21}\)
= \(\frac{-24}{84}\)
= \(\frac{-2}{7}\)
\(\frac{5}{12}\)
\(\frac{1}{3}\)
\(\frac{3}{4}\)
\(\frac{7}{12}\)
Correct answer is D
Coca-cola = 10 bottles, Fanta = 8 bottles
Sprite = 6 bottles, Total = 24
P(cola-cola) = \(\frac{10}{24}\)
P(not coca-cola) = 1 - \(\frac{10}{24}\)
\(\frac{24 - 10}{24}\) = \(\frac{14}{24}\)
= \(\frac{7}{12}\)
96
94
92
90
Correct answer is A
% of boxes containing at least 5 defective bolts each
= \(\frac{7 + 17 + 10 + 8 + 6}{50}\)
= \(\frac{48}{50}\) x \(\frac{100}{1}\)
= 96%