Express \(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) as a single algebraic fraction
\(\frac{-3}{(x + 1)(2 - x)}\)
\(\frac{3}{(x + 1)(2 - x)}\)
\(\frac{-1}{(x + 1)}\)
\(\frac{1}{(x + 1)(x - 2)}\)
Correct answer is A
\(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) = \(\frac{x - 2 - x - 1}{(x + 1)(x - 2)}\)
= \(\frac{-3}{(x + 1)(2 - x)}\)
r > \(\frac{abc}{bc + ac + ab}\)
r < abc
r > \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)
\(\frac{1}{abc}\)
Correct answer is A
\(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1 = \(\frac{bcr + acr + abr}{abc}\) > 1
r(bc + ac + ba > abc) = r > \(\frac{abc}{bc + ac + ab}\)
What value of Q will make the expression 4x2 + 5x + Q a complete square?
\(\frac{25}{16}\)
\(\frac{25}{64}\)
\(\frac{5}{8}\)
\(\frac{5}{4}\)
Correct answer is A
4x2 + 5x + Q
To make a complete square, the coefficient of x2 must be 1
= x2 + \(\frac{5x}{4}\) + \(\frac{Q}{4}\)
Then (half the coefficient of x2) should be added
i.e. x2 + \(\frac{5x}{4}\) + \(\frac{25}{64}\)
∴ \(\frac{Q}{4}\) = \(\frac{25}{64}\)
Q = \(\frac{4 \times 25}{64}\)
= \(\frac{25}{16}\)
Solve the pair of equation for x and y respectively \(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)
-1, 2
1, 2
2, 1
2, -1
Correct answer is D
\(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)
Let \(x^{-1}\) = a and \(y^{-1}\)= b
2a - 3b = 4 .......(i)
4a + b = 1 .........(ii)
(i) x 3 = 12a + 3b = 3........(iii)
2a - 3b = 4 ...........(i)
(i) + (iii) = 14a = 7
∴ a = \(\frac{7}{14}\) = \(\frac{1}{2}\)
From (i), 3b = 2a - 4
3b = 1 - 4
3b = -3
∴ b = -1
From substituting, \(2^{-1} = x^{-1}\)
∴ x = 2
\(y^{-1} = -1, y = -1\)
What are K and L respectively if \(\frac{1}{2}\)(3y - 4x)2 = (8x2 + kxy + Ly2)
-12, \(\frac{9}{2}\)
-6, 9
6, 9
12, \(\frac{9}{2}\)
Correct answer is A
\(\frac{1}{2}\)(3y - 4x)2 = (8x2 + kxy + Ly2)
\(\frac{1}{2}\)(9y2 - 24xy + 16x2) = 8x2 + kxy + Ly2
\(\frac{9}{2}\)y2 - 12xy) = kxy + Ly2
k = -12 ∴ L = \(\frac{9}{2}\)