JAMB Mathematics Past Questions & Answers - Page 239

1,191.

Express \(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) as a single algebraic fraction

A.

\(\frac{-3}{(x + 1)(2 - x)}\)

B.

\(\frac{3}{(x + 1)(2 - x)}\)

C.

\(\frac{-1}{(x + 1)}\)

D.

\(\frac{1}{(x + 1)(x - 2)}\)

Correct answer is A

\(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) = \(\frac{x - 2 - x - 1}{(x + 1)(x - 2)}\)

= \(\frac{-3}{(x + 1)(2 - x)}\)

1,192.

Find the range of values of values of r which satisfies the following inequality, where a, b and c are positive \(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1

A.

r > \(\frac{abc}{bc + ac + ab}\)

B.

r < abc

C.

r > \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)

D.

\(\frac{1}{abc}\)

Correct answer is A

\(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1 = \(\frac{bcr + acr + abr}{abc}\) > 1

r(bc + ac + ba > abc) = r > \(\frac{abc}{bc + ac + ab}\)

1,193.

What value of Q will make the expression 4x2 + 5x + Q a complete square?

A.

\(\frac{25}{16}\)

B.

\(\frac{25}{64}\)

C.

\(\frac{5}{8}\)

D.

\(\frac{5}{4}\)

Correct answer is A

4x2 + 5x + Q

To make a complete square, the coefficient of x2 must be 1

= x2 + \(\frac{5x}{4}\) + \(\frac{Q}{4}\)

Then (half the coefficient of x2) should be added

i.e. x2 + \(\frac{5x}{4}\) + \(\frac{25}{64}\)

∴ \(\frac{Q}{4}\) = \(\frac{25}{64}\)

Q = \(\frac{4 \times 25}{64}\)

= \(\frac{25}{16}\)

1,194.

Solve the pair of equation for x and y respectively \(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)

A.

-1, 2

B.

1, 2

C.

2, 1

D.

2, -1

Correct answer is D

\(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)

Let \(x^{-1}\) = a and \(y^{-1}\)= b

2a - 3b = 4 .......(i)

4a + b = 1 .........(ii)

(i) x 3 = 12a + 3b = 3........(iii)

2a - 3b = 4 ...........(i)

(i) + (iii) = 14a = 7

∴ a = \(\frac{7}{14}\) = \(\frac{1}{2}\)

From (i), 3b = 2a - 4

3b = 1 - 4

3b = -3

∴ b = -1

From substituting, \(2^{-1} = x^{-1}\)

∴ x = 2

\(y^{-1} = -1, y = -1\)

1,195.

What are K and L respectively if \(\frac{1}{2}\)(3y - 4x)2 = (8x2 + kxy + Ly2)

A.

-12, \(\frac{9}{2}\)

B.

-6, 9

C.

6, 9

D.

12, \(\frac{9}{2}\)

Correct answer is A

\(\frac{1}{2}\)(3y - 4x)2 = (8x2 + kxy + Ly2)

\(\frac{1}{2}\)(9y2 - 24xy + 16x2) = 8x2 + kxy + Ly2

\(\frac{9}{2}\)y2 - 12xy) = kxy + Ly2

k = -12 ∴ L = \(\frac{9}{2}\)