JAMB Mathematics Past Questions & Answers - Page 235

1,171.

Factorize completely \((x^2 + x)^2 - (2x + 2)^2\)

A.

(x + 1)(x + 2)(x - 2)

B.

(x + 1) 2(x + 2) (x - 2)

C.

(x + 1)2 (x + 2)2

D.

(x + 1)2 (x + 2)(x - 2)

Correct answer is D

\((x^{2} + x)^{2} - (2x + 2)^{2}\)

= \((x^{2} + x + 2x + 2)(x^{2} + x - (2x + 2))\)

= \((x^{2} + 3x + 2)(x^{2} - x - 2)\)

= \(((x + 1)(x + 2))((x + 1)(x - 2))\)

= \((x + 1)^{2} (x + 2)(x - 2)\)

1,172.

If (g(y)) = \(\frac{y - 3}{11}\) + \(\frac{11}{y^2 - 9}\). what is g(y + 3)?

A.

\(\frac{y}{11} + \frac{11}{y(y + 6)}\)

B.

\(\frac{y}{11} + \frac{11}{y(y + 3)}\)

C.

\(\frac{y + 30}{11} + \frac{11}{y(y + 3)}\)

D.

\(\frac{y + 3}{11} + \frac{11}{y(y - 6)}\)

Correct answer is A

\(g(y) = \frac{y - 3}{11} + \frac{11}{y^{2} - 9}\)

\(\therefore g(y + 3) = \frac{(y + 3) - 3}{11} + \frac{11}{(y + 3)^{2} - 9}\)

\(g(y + 3) = \frac{y}{11} + \frac{11}{y^{2} + 6y + 9 - 9}\)

\(g(y + 3) = \frac{y}{11} + \frac{11}{y^{2} + 6y}\)

= \(\frac{y}{11} + \frac{11}{y(y + 6)}\)

1,173.

If a = -3, b = 2, c = 4, evaluate \(\frac{a^3 - b^3 - c^{\frac{1}{2}}}{b - a - c}\)

A.

37

B.

\(\frac{-37}{5}\)

C.

\(\frac{37}{5}\)

D.

-37

Correct answer is D

\(\frac{a^{3} - b^{3} - c^{\frac{1}{2}}}{b - a - c} = \frac{(-3)^{3} - (2)^{3} - 4^{\frac{1}{2}}}{2 - (-3) - 4}\)

= \(\frac{-37}{1} = -37\)

1,174.

If x varies inversely as the cube root of y and x = 1 when y = 8, find y when x = 3

A.

\(\frac{1}{3}\)

B.

\(\frac{2}{3}\)

C.

\(\frac{8}{27}\)

D.

\(\frac{4}{9}\)

Correct answer is C

\(x \propto \frac{1}{\sqrt[3]{y}} \implies x = \frac{k}{\sqrt[3]{y}}\)

When y = 8, x = 1

\(1 = \frac{k}{\sqrt[3]{8}} \implies 1 = \frac{k}{2}\)

\(k = 2\)

\(\therefore x = \frac{2}{\sqrt[3]{y}}\)

When x = 3,

\(3 = \frac{2}{\sqrt[3]{y}} \implies \sqrt[3]{y} = \frac{2}{3}\)

\(y = (\frac{2}{3})^{3} = \frac{8}{27}\)

1,175.

If \(\frac{1}{p}\) = \(\frac{a^2 + 2ab + b^2}{a - b}\) and \(\frac{1}{q}\) = \(\frac{a + b}{a^2 - 2ab + b^2}\) Find \(\frac{p}{q}\)

A.

\(\frac{a + b}{a - b}\)

B.

\(\frac{1}{a^2 - b^2}\)

C.

\(\frac{a - b}{a + b}\)

D.

a2 - b2

Correct answer is B

\(\frac{1}{p} = \frac{a^{2} + 2ab + b^{2}}{a - b}\)

\(\frac{1}{q} = \frac{a + b}{a^{2} - 2ab + b^{2}}\)

\(\frac{1}{p} = \frac{(a + b)^{2}}{a - b}\)

\(\frac{1}{q} = \frac{a + b}{(a - b)^{2}}\)

\(\therefore p = \frac{a - b}{(a + b)^{2}}\)

\(\frac{p}{q} = p \times \frac{1}{q} = \frac{a - b}{(a + b)^{2}} \times \frac{a + b}{(a - b)^{2}}\)

= \(\frac{1}{(a + b)(a - b)}\)

= \(\frac{1}{a^{2} - b^{2}}\)