In triangle PQR, PQ = 1cm, QR = 2cm and PQR = 120o Find the longest side of the triangle
\(\sqrt{3}\)cm
\(\sqrt{7}\)cm
3cm
7cm
Correct answer is B
PR2 = PQ2 + QR2 - 2(QR)(PQ) COS 120o
PR2 = 12 + 22 - 2(1)(2) x - cos 60o
= 5 - 2(1)(2) x -\(\frac{1}{2}\)
= 5 + 2 = 7
PR = \(\sqrt{7}\)cm
If cot \(\theta\) = \(\frac{x}{y}\), find cosec\(\theta\)
\(\frac{1}{y}\)(x2 + y2)
\(\frac{x}{y}\)
\(\frac{1}{y}\)\(\sqrt{x^2 + y^2}\)
\(\frac{x - y}{y}\)
Correct answer is C
\(\cot \theta = \frac{x}{y}\)
\(\implies \tan \theta = \frac{y}{x}\)
\(opp = y; adj = x\)
Using Pythagoras theorem, \(Hyp^{2} = Opp^{2} + Adj^{2}\)
\(Hyp^{2} = y^{2} + x^{2}\)
\(Hyp = \sqrt{y^{2} + x^{2}}\)
\(\sin \theta = \frac{y}{\sqrt{y^{2} + x^{2}}}\)
\(\therefore \csc \theta = \frac{\sqrt{y^{2} + x^{2}}}{y}\)
= \(\frac{1}{y}(\sqrt{y^{2} + x^{2}})\)
Simplify \(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\)
\(\frac{a - b}{2a + b}\)
\(\frac{2a + 7b}{a - b}\)
\(\frac{2a - 7b}{a + b}\)
\(\frac{2a + 7b}{a + b}\)
Correct answer is D
\(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\) = \(\frac{(2a)^2 - (7b)^2}{(a + b)(2a - 7b)}\)
= \(\frac{(2a + 7b)(2a - 7b)}{(a + b)(2a - 7b)}\)
= \(\frac{2a + 7b}{a + b}\)
Simplify \(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\)
\(\frac{x}{(x +2)(x - 3)}\)
\(\frac{2}{(x + 5)(x - 3)}\)
\(\frac{2}{(x + 1)(x + 3)}\)
\(\frac{2}{(x - 1)(x - 3)}\)
Correct answer is C
\(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\) = \(\frac{1}{(x + 1)(x + 2)}\) + \(\frac{1}{(x + 1)(x + 1)}\)
\(\frac{(x + 1)+ (x + 3)}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{x + 1 + x + 3}{(x + 1)(x + 2)(x + 3)}\)
\(\frac{2x + 4}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{2(x + 2)}{(x + 1)(x + 2)(x + 3)}\)
= \(\frac{2}{(x + 1)(x + 3)}\)
The solution of the quadratic equation px2 + qx + b = 0 is
\(\sqrt{\frac{-b \pm b^2 - 4ac}{2a}}\)
\(\frac{-b \pm \sqrt{ p^2 - 4pb}}{2a}\)
\(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)
\(\frac{-q \pm \sqrt{ p^2 - 4bp}}{2p}\)
Correct answer is C
px2 + qx + b = 0
Using almighty formula
\(\frac{-b \pm \sqrt{ b^2 - 4ac}}{2a}\).........(i)
Where a = p, b = q and c = b
substitute for this value in equation (i)
= \(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)