JAMB Mathematics Past Questions & Answers - Page 229

1,141.

In triangle PQR, PQ = 1cm, QR = 2cm and PQR = 120o Find the longest side of the triangle

A.

\(\sqrt{3}\)cm

B.

\(\sqrt{7}\)cm

C.

3cm

D.

7cm

Correct answer is B

PR2 = PQ2 + QR2 - 2(QR)(PQ) COS 120o

PR2 = 12 + 22 - 2(1)(2) x - cos 60o

= 5 - 2(1)(2) x -\(\frac{1}{2}\)

= 5 + 2 = 7

PR = \(\sqrt{7}\)cm

1,142.

If cot \(\theta\) = \(\frac{x}{y}\), find cosec\(\theta\)

A.

\(\frac{1}{y}\)(x2 + y2)

B.

\(\frac{x}{y}\)

C.

\(\frac{1}{y}\)\(\sqrt{x^2 + y^2}\)

D.

\(\frac{x - y}{y}\)

Correct answer is C

\(\cot \theta = \frac{x}{y}\)

\(\implies \tan \theta = \frac{y}{x}\)

\(opp = y; adj = x\)

Using Pythagoras theorem, \(Hyp^{2} = Opp^{2} + Adj^{2}\)

\(Hyp^{2} = y^{2} + x^{2}\)

\(Hyp = \sqrt{y^{2} + x^{2}}\)

\(\sin \theta = \frac{y}{\sqrt{y^{2} + x^{2}}}\)

\(\therefore \csc \theta = \frac{\sqrt{y^{2} + x^{2}}}{y}\)

= \(\frac{1}{y}(\sqrt{y^{2} + x^{2}})\)

1,143.

Simplify \(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\)

A.

\(\frac{a - b}{2a + b}\)

B.

\(\frac{2a + 7b}{a - b}\)

C.

\(\frac{2a - 7b}{a + b}\)

D.

\(\frac{2a + 7b}{a + b}\)

Correct answer is D

\(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\) = \(\frac{(2a)^2 - (7b)^2}{(a + b)(2a - 7b)}\)

= \(\frac{(2a + 7b)(2a - 7b)}{(a + b)(2a - 7b)}\)

= \(\frac{2a + 7b}{a + b}\)

1,144.

Simplify \(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\)

A.

\(\frac{x}{(x +2)(x - 3)}\)

B.

\(\frac{2}{(x + 5)(x - 3)}\)

C.

\(\frac{2}{(x + 1)(x + 3)}\)

D.

\(\frac{2}{(x - 1)(x - 3)}\)

Correct answer is C

\(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\) = \(\frac{1}{(x + 1)(x + 2)}\) + \(\frac{1}{(x + 1)(x + 1)}\)

\(\frac{(x + 1)+ (x + 3)}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{x + 1 + x + 3}{(x + 1)(x + 2)(x + 3)}\)

\(\frac{2x + 4}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{2(x + 2)}{(x + 1)(x + 2)(x + 3)}\)

= \(\frac{2}{(x + 1)(x + 3)}\)

1,145.

The solution of the quadratic equation px2 + qx + b = 0 is

A.

\(\sqrt{\frac{-b \pm b^2 - 4ac}{2a}}\)

B.

\(\frac{-b \pm \sqrt{ p^2 - 4pb}}{2a}\)

C.

\(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)

D.

\(\frac{-q \pm \sqrt{ p^2 - 4bp}}{2p}\)

Correct answer is C

px2 + qx + b = 0

Using almighty formula

\(\frac{-b \pm \sqrt{ b^2 - 4ac}}{2a}\).........(i)

Where a = p, b = q and c = b

substitute for this value in equation (i)

= \(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)