JAMB Mathematics Past Questions & Answers - Page 222

1,106.

If tan \(\theta\) = \(\frac{m^2 - n^2}{2mn}\) find sec\(\theta\)

A.

\(\frac{m^2 + n^2}{(m^2 - n^2)}\)

B.

\(\frac{m^2 + n^2}{2mn}\)

C.

\(\frac{mn}{2(m^2 + n^2)}\)

D.

\(\frac{m^2n^2}{2(m^2 - n^2)}\)

Correct answer is B

Tan \(\theta\) = \(\frac{m^2 - n^2}{2mn}\)

\(\frac{\text{Opp}}{\text{Adj}}\) by pathagoras theorem

= Hyp2 = Opp2 + Adj2

Hyp2 = (m2 - n2) + (2mn)2

Hyp2 = m4 - 2m2n4 - 4m2 - n2

Hyp2 = m4 + 2m2 + n2n

Hyp2 = (m2 - n2)2

Hyp2 = \(\frac{m^2 + n^2}{2mn}\)

1,107.

The sine, cosine and tangent of 210o are respectively

A.

\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)

B.

\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{3}\)

C.

\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)

D.

\(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)

Correct answer is D

210o = 180o - 210o = - 30o

From ratio of sides, sin -30o = -\(\frac{1}{2}\)

Cos 210o = 180o - 210o = -30o

= cos -30o = \(\frac{-3}{2}\)

But tan 30o = \(\frac{1}{\sqrt{3}}\), rationalizing this

= \(\frac{1}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\) = \(\frac{\sqrt{3}}{3}\)

∴ = \(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)

1,108.

Two chords QR and NP of a circle intersect inside the circle at x. If RQP = 37o, RQN = 49o and QPN = 35o, find PRQ

A.

35o

B.

37o

C.

49o

D.

59o

Correct answer is D

In PNO, ONP

= 180 - (35 + 86)

= 180 - 121

= 59°

PRQ = QNP = 59°(angles in the same segment of a circle are equal)

1,109.

Three angles of a nonagon are equal and the sum of six other angles is 1110o. Calculate the size of one of the equal angles

A.

210o

B.

150o

C.

105o

D.

50o

Correct answer is D

Sum of interior angles of any polygon is (2n - 4) right angle; n angles of the Nonagon = 9

Where 3 are equal and 6 other angles = 1110o

(2 x 9 - 4)90o = (18 - 4)90o

14 x 90o = 1260o

9 angles = 1260°; 6 angles = 110o

Remaining 3 angles = 1260o - 1110o = 150o

Size of one of the 3 angles \(\frac{150}{3}\) = 50o

1,110.

Find the eleventh term of the progression 4, 8, 16.....

A.

213

B.

212

C.

211

D.

210

Correct answer is B

a = 4, r = \(\frac{4}{2}\)

\(\frac{8}{4}\) = 2

n = 11

Tn = arn - 1

T11 = 4(2)11 - 1

4(2)10 = 212

since 4 = 22

= 212