JAMB Mathematics Past Questions & Answers - Page 215

1,071.

Simplify \(\frac{1}{x - 2}\) + \(\frac{1}{x + 2}\) + \(\frac{2x}{x^2 - 4}\)

A.

\(\frac{2x}{(x - 2)(x + 2)(x^2 - 4)}\)

B.

\(\frac{2x}{x^2 - 4}\)

C.

\(\frac{x}{x^2 - 4}\)

D.

\(\frac{4x}{x^2 - 4}\)

Correct answer is D

\(\frac{1}{x - 2}\) + \(\frac{1}{x + 2}\) + \(\frac{2x}{x^2 - 4}\)

= \(\frac{(x + 2) + (x - 2) + 2x}{(x + 2)(x - 2)}\)

= \(\frac{4x}{x^2 - 4}\)

1,072.

If \(5^{(x + 2y)} = 5\) and \(4^{(x + 3y)} = 16\), find \(3^{(x + y)}\).

A.

7

B.

1

C.

3

D.

27

Correct answer is B

\(5^{(x + 2y)} = 5\)

∴ x + 2y = 1.....(i)

\(4^{(x + 3y)} = 16 = 4^2\)

x + 3y = 2 .....(ii)

x + 2y = 1.....(i)

x + 3y = 2......(ii)

y = 1

Substitute y = 1 into equation (i) 

\(x + 2y = 1 \implies x + 2(1) = 1\)

\(x + 2 = 1 \implies x = -1\)

\(\therefore 3^{(x + y)} = 3^{(-1 + 1)}\)

\(3^{0} = 1\)

1,073.

Factorize (4a + 3)2 - (3a - 2)2

A.

(a + 1)(a + 5)

B.

(a - 5)(7a - 1)

C.

(a + 5)(7a + 1)

D.

a(7a + 1)

Correct answer is C

(4a + 3)2 - (3a - 2)2 = a2 - b2

= (a + b)(a - b)

= [(4a + 3) + (3a - 2)][(4a + 3) + (3a - 2)]

= [(4a + 3 + 3a - 2)][(4a + 3 - 3a + 2)]

= (7a + 1)(a + 5)

∴ (a + 5)(7a + 1)

1,074.

Simplify \(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\)

A.

\(\frac{12}{35x + 1}\)

B.

\(\frac{1}{35(x + 1)}\)

C.

\(\frac{12x}{35(x + 7)}\)

D.

\(\frac{12}{35x + 35}\)

Correct answer is D

\(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\) = \(\frac{1}{5(x + 1)}\) + \(\frac{1}{7(x + 1)}\)

= \(\frac{7 + 5}{35(x + 1)}\)

= \(\frac{12}{35(x + 1)}\)

1,075.

Solve the equation 3x2 + 6x - 2 = 0

A.

x = -1 \(\pm\) \(\frac{\sqrt{3}}{3}\)

B.

x = -1 \(\pm\) \(\frac{\sqrt{15}}{3}\)

C.

x = -2 \(\pm\) 2

D.

x = 3 \(\pm\) \(\frac{\sqrt{3}}{15}\)

Correct answer is B

3x2 + 6x - 2 = 0

Using almighty formula i.e. x = \(\frac{b \pm \sqrt{b^2 - 4ac}}{2a}\)

a = 3, b = 6, c = -2

x = \(\frac{-6 \pm \sqrt{6^2 - 4(3)(-2)}}{2(3)}\)

x = \(\frac{-6 \pm \sqrt{36 + 24}}{6}\)

x = \(\frac{-6 \pm \sqrt{60}}{6}\)

x = \(\frac{-6 \pm \sqrt{4 \times 15}}{6}\)

x = \(-1 \pm \frac{\sqrt{15}}{3}\)