JAMB Mathematics Past Questions & Answers - Page 208

1,036.

If the quadratic function 3x2 - 7x + R is a perfect square, find R

A.

\(\frac{49}{24}\)

B.

\(\frac{49}{12}\)

C.

\(\frac{49}{13}\)

D.

\(\frac{49}{3}\)

E.

\(\frac{49}{36}\)

Correct answer is B

3x2 - 7x + R. Computing the square, we have
x2 - \(\frac{7}{3}\) = -\(\frac{R}{3}\)

(\(\frac{x}{1} - \frac{7}{6}\))2 = -\(\frac{R}{3}\) + \(\frac{49}{36}\)

\(\frac{-R}{3}\) + \(\frac{49}{36}\) = 0

R = \(\frac{49}{36}\) x \(\frac{3}{1}\)

= \(\frac{49}{12}\)

1,037.

At what real value of x do the curves whose equations are y = x3 + x and y = x2 + 1 intersect?

A.

-2

B.

2

C.

-1

D.

9

E.

1

Correct answer is E

y = x3 + x and y = x2 + 1
\(\begin{array}{c|c} x & -2 & -1 & 0 & 1 & 2 \\ \hline Y = x^3 + x & -10 & -2 & 0 & 2 & 10 \\ \hline y = x^2 + 1 & 5 & 2 & 1 & 2 & 5\end{array}\)
The curves intersect at x = 1

1,038.

Factorize abx2 + 8y - 4bx - 2axy

A.

(ax - 4)(bx - 2y)

B.

(ax + b)(x - 8y)

C.

(ax - 2y)(bx - 4)

D.

(bx - 4)(ax - 2y)

E.

(abx - 4)(x - 2y)

Correct answer is A

abx2 + 8y - 4bx - 2axy = (abx2 - 4bx) + (8y - 2axy)

= bx(ax - 4) 2y(ax - 4) 2y(ax - 4)

= (bx - 2y)(ax - 4)

1,039.

If 32y + 6(3y) = 27. Find y

A.

3

B.

-1

C.

2

D.

-3

E.

1

Correct answer is E

32y + 6(3y) = 27

This can be rewritten as (3y)2 + 6(3y) = 27

Let 3y = x

x2 + 6x - 27 = 0

(x + 9)(x - 3) = 0

when x - 3 = 0, x = 3

sub. for x in 3y = x

3y = 3

log33 = y

y = 1

1,040.

The factors of 9 - (x2 - 3x - 1)2 are

A.

-(x - 4)(x + 1) (x - 1)(x - 2)

B.

(x - 4)(x - 2) (x - 1)(x + 1)

C.

-(x - 2)(x + 1) (x - 2) (x - 1)

D.

(x - 2)(x + 2) (x - 1)(x + 1)

Correct answer is A

9 - (x2 - 3x - 1)2 = [3 - (x2 - 3x - 1)] [3 + (x2 - 3x - 1)]

= (3 - x2 + 3x + 1)(3 + x2 - 3x - 1)

= (4 + 3x - x2)(x2 - 3x + 2)

= (4 - x)(1 + x)(x - 1)(x - 2)

= -(x - 4)(x + 1) (x - 1)(x - 2)