JAMB Mathematics Past Questions & Answers - Page 198

986.

If pq + 1 = q2 and t = \(\frac{1}{p}\) - \(\frac{1}{pq}\) express t in terms of q

A.

\(\frac{1}{p - q}\)

B.

\(\frac{1}{q - 1}\)

C.

\(\frac{1}{q + 1}\)

D.

1 + 0

E.

\(\frac{1}{1 - q}\)

Correct answer is C

Pq + 1 = q2......(i)

t = \(\frac{1}{p}\) - \(\frac{1}{pq}\).........(ii)

p = \(\frac{q^2 - 1}{q}\)

Sub for p in equation (ii)

t = \(\frac{1}{q^2 - \frac{1}{q}}\) - \(\frac{1}{\frac{q^2 - 1}{q} \times q}\)

t = \(\frac{q}{q^2 - 1}\) - \(\frac{1}{q^2 - 1}\)

t = \(\frac{q - 1}{q^2 - 1}\)

= \(\frac{q - 1}{(q + 1)(q - 1)}\)

= \(\frac{1}{q + 1}\)

987.

Simplify (1 + \(\frac{\frac{x - 1}{1}}{\frac{1}{x + 1}}\))(x + 2)

A.

(x2 - 1)(x + 2)

B.

x2(x + 2)

C.

2 + 34

D.

\(\frac{3x^2 - 1}{(x - 1)}\)

Correct answer is B

\((1 + \frac{x - 1}{\frac{1}{x + 1}})(x + 2)\)

\((x - 1) \div \frac{1}{x + 1} = (x - 1)(x + 1) = x^{2} - 1\)

\((1 + x^{2} - 1)(x + 2) = x^{2}(x + 2)\)

988.

If a = \(\frac{2x}{1 - x}\) and b = \(\frac{1 + x}{1 - x}\), then a2 - b2 in the simplest form is

A.

\(\frac{3x + 1}{x - 1}\)

B.

\(\frac{3x^2 - 1}{(x - 1)}\)2

C.

x\(\frac{3x - 2}{1 - x}\)

D.

\(\frac{3x^2 - 1}{(x - 1)}\)

Correct answer is A

a2 - b2 = (\(\frac{2x}{1 - x}\))2 - (\(\frac{1 + x}{1 - x}\))2

= (\(\frac{2x}{1 - x} + \frac{1 + x}{1 - x}\))(\(\frac{2x}{1 - x} - \frac{1 + x}{1 - X}\))

= (\(\frac{3x + 1}{1 - x}\))(\(\frac{x - 1}{1 - x}\))

= \(\frac{3x + 1}{x - 1}\)

989.

The sides of a triangle are(x + 4)cm, xcm and (x - 4)cm, respectively If the cosine of the largest angle is \(\frac{1}{5}\), find the value of x

A.

24cm

B.

20cm

C.

28cm

D.

7cm

E.

\(\frac{88}{7}\)

Correct answer is A

< B is the largest since the side facing it is the largest, i.e. (x + 4)cm

Cosine B = \(\frac{1}{5}\)

= 0.2 given

b2 - a2 + c2 - 2a Cos B

Cos B = \(\frac{a^2 + c^2 - b^2}{2ac}\)

\(\frac{1}{5}\) = \(\frac{x^2 + ?(x - 4)^2 - (x + 4)^2}{2x (x - 4)}\)

\(\frac{1}{5}\)= \(\frac{x(x - 16)}{2x(x - 4)}\)

\(\frac{1}{5}\) = \(\frac{x - 16}{2x - 8}\)

= 5(x - 16)

= 2x - 8

3x = 72

x = \(\frac{72}{3}\)

= 24

990.

A cone is formed by bending a sector of a circle having an angle of 210o. Find the radius of the base of the cone if the diameter of the circle is 12cm.

A.

12cm

B.

7.00cm

C.

1.75cm

D.

21cm

E.

3.50cm

Correct answer is E

If diameter of the circle = 12cm; radius of the circle(L) = \(\frac{12}{2}\)

= 6cm

\(\frac{\theta}{360}\) = \(\frac{r}{L}\) where \(\theta\) = 210\(\theta\), L = 6cm

\(\frac{210}{360}\) = \(\frac{r}{6}\)

where r = radius of the base of the cone

V = \(\frac{1260}{360}\)

= 3.50cm