If pq + 1 = q2 and t = \(\frac{1}{p}\) - \(\frac{1}{pq}\) express t in terms of q
\(\frac{1}{p - q}\)
\(\frac{1}{q - 1}\)
\(\frac{1}{q + 1}\)
1 + 0
\(\frac{1}{1 - q}\)
Correct answer is C
Pq + 1 = q2......(i)
t = \(\frac{1}{p}\) - \(\frac{1}{pq}\).........(ii)
p = \(\frac{q^2 - 1}{q}\)
Sub for p in equation (ii)
t = \(\frac{1}{q^2 - \frac{1}{q}}\) - \(\frac{1}{\frac{q^2 - 1}{q} \times q}\)
t = \(\frac{q}{q^2 - 1}\) - \(\frac{1}{q^2 - 1}\)
t = \(\frac{q - 1}{q^2 - 1}\)
= \(\frac{q - 1}{(q + 1)(q - 1)}\)
= \(\frac{1}{q + 1}\)
Simplify (1 + \(\frac{\frac{x - 1}{1}}{\frac{1}{x + 1}}\))(x + 2)
(x2 - 1)(x + 2)
x2(x + 2)
2 + 34
\(\frac{3x^2 - 1}{(x - 1)}\)
Correct answer is B
\((1 + \frac{x - 1}{\frac{1}{x + 1}})(x + 2)\)
\((x - 1) \div \frac{1}{x + 1} = (x - 1)(x + 1) = x^{2} - 1\)
\((1 + x^{2} - 1)(x + 2) = x^{2}(x + 2)\)
If a = \(\frac{2x}{1 - x}\) and b = \(\frac{1 + x}{1 - x}\), then a2 - b2 in the simplest form is
\(\frac{3x + 1}{x - 1}\)
\(\frac{3x^2 - 1}{(x - 1)}\)2
x\(\frac{3x - 2}{1 - x}\)
\(\frac{3x^2 - 1}{(x - 1)}\)
Correct answer is A
a2 - b2 = (\(\frac{2x}{1 - x}\))2 - (\(\frac{1 + x}{1 - x}\))2
= (\(\frac{2x}{1 - x} + \frac{1 + x}{1 - x}\))(\(\frac{2x}{1 - x} - \frac{1 + x}{1 - X}\))
= (\(\frac{3x + 1}{1 - x}\))(\(\frac{x - 1}{1 - x}\))
= \(\frac{3x + 1}{x - 1}\)
24cm
20cm
28cm
7cm
\(\frac{88}{7}\)
Correct answer is A
< B is the largest since the side facing it is the largest, i.e. (x + 4)cm
Cosine B = \(\frac{1}{5}\)
= 0.2 given
b2 - a2 + c2 - 2a Cos B
Cos B = \(\frac{a^2 + c^2 - b^2}{2ac}\)
\(\frac{1}{5}\) = \(\frac{x^2 + ?(x - 4)^2 - (x + 4)^2}{2x (x - 4)}\)
\(\frac{1}{5}\)= \(\frac{x(x - 16)}{2x(x - 4)}\)
\(\frac{1}{5}\) = \(\frac{x - 16}{2x - 8}\)
= 5(x - 16)
= 2x - 8
3x = 72
x = \(\frac{72}{3}\)
= 24
12cm
7.00cm
1.75cm
21cm
3.50cm
Correct answer is E
If diameter of the circle = 12cm; radius of the circle(L) = \(\frac{12}{2}\)
= 6cm
\(\frac{\theta}{360}\) = \(\frac{r}{L}\) where \(\theta\) = 210\(\theta\), L = 6cm
\(\frac{210}{360}\) = \(\frac{r}{6}\)
where r = radius of the base of the cone
V = \(\frac{1260}{360}\)
= 3.50cm