If 0.0000152 x 0.042 = A x 108, where 1 \(\leq\) A < 10, find A and B
A = 9, B = 6.38
A = 6.38, B = -9
A = -6.38, B = -9
A = -9, B = -6.38
Correct answer is B
0.0000152 x 0.042 = A x 108
1 \(\leq\) A < 10, it means values of A includes 1 - 9
0.0000152 = 1.52 x 10-5
0.00042 = 4.2 x 10-4
1.52 x 4.2 = 6.384
10-5 x 10-4
= 10-5-4
= 10-9
= 6.38 x 10-9
A = 6.38, B = -9
\(\frac{1 - L}{1 + L}\)
\(\frac{L^2 \sqrt{3}}{1 + L}\)
\(\frac{1 + L^3}{L^2}\)
\(\frac{L(L - 1)}{1 - L + 1 \sqrt{1 - L^2}}\)
Correct answer is D
Given Cos z = L, z is an acute angle
\(\frac{\text{cot z - cosec z}}{\text{sec z + tan z}}\) = cos z
= \(\frac{\text{cos z}}{\text{sin z}}\)
cosec z = \(\frac{1}{\text{sin z}}\)
cot z - cosec z = \(\frac{\text{cos z}}{\text{sin z}}\) - \(\frac{1}{\text{sin z}}\)
cot z - cosec z = \(\frac{L - 1}{\text{sin z}}\)
sec z = \(\frac{1}{\text{cos z}}\)
tan z = \(\frac{\text{sin z}}{\text{cos z}}\)
sec z = \(\frac{1}{\text{cos z}}\) + \(\frac{\text{sin z}}{\text{cos z}}\)
= \(\frac{1}{l}\) + \(\frac{\text{sin z}}{L}\)
the original eqn. becomes
\(\frac{\text{cot z - cosec z}}{\text{sec z + tan z}}\) = \(\frac{L - \frac{1}{\text{sin z}}}{1 + sin \frac{z}{L}}\)
= \(\frac{L(L - 1)}{\text{sin z}(1 + \text{sin z})}\)
= \(\frac{L(L - 1)}{\text{sin z} + 1 - cos^2 z}\)
= sin z + 1
= 1 + \(\sqrt{1 - L^2}\)
= \(\frac{L(L - 1)}{1 - L + 1 \sqrt{1 - L^2}}\)
In a figure, PQR = 60o, PRS = 90o, RPS = 45o, QR = 8cm. Determine PS
2\(\sqrt{3}\)cm
4\(\sqrt{6}\)cm
2\(\sqrt{6}\)cm
8\(\sqrt{6}\)cm
8cm
Correct answer is B
From the diagram, sin 60o = \(\frac{PR}{8}\)
PR = 8 sin 60 = \(\frac{8\sqrt{3}}{2}\)
= 4\(\sqrt{3}\)
Cos 45o = \(\frac{PR}{PS}\) = \(\frac{4 \sqrt{3}}{PS}\)
PS Cos45o = 4\(\sqrt{3}\)
PS = 4\(\sqrt{3}\) x 2
= 4\(\sqrt{6}\)
Solve the following equations 4x - 3 = 3x + y = x - y = 3, 3x + y = 2y + 5x - 12
x = 5, y = 2
x = 2, y = 5
x = 5, y = -2
x = -2, y = -5
x = -5, y = -2
Correct answer is A
4x - 3 = 3x + y = x - y = 3.......(i)
3x + y = 2y + 5x - 12.........(ii)
eqn(ii) + eqn(i) 3x = 15
x = 5
substitute for x in equation (i)
5 - y = 3
y = 2
4:1 increase
2:1 increase
1:1 no change
1:4 decrease
3:4 decrease
Correct answer is B
\(x \propto y^{3} z^{4}\)
\(x = ky^{3} z^{4}\)
If y is halved and z is doubled, we have
\(x = k (\frac{1}{2} y)^{3} (2z)^{4}\)
\(x = k (\frac{y^{3}}{8}) (16z^{4})\)\)
\(x = 2k y^{3} z^{4}\)
\(\therefore \text{x is increased in the ratio 2 : 1}\)