JAMB Mathematics Past Questions & Answers - Page 191

951.

Factorize completely 81a\(^4\) - 16b\(^4\)

A.

(3a + 2b)(2a - 3b)(9a2 + 4b2)

B.

(3a - 2b)(2a - 3b)(4a2 - 9b2)

C.

(3a - 2b)(3a + 2b)(9a2 + 4b2)

D.

(6a - 2b)(8a - 3b)(4a3 - 9b2)

Correct answer is C

81a\(^4\) - 16b\(^4\) = (9a\(^2\))\(^2\) - (4b\(^2\))\(^2\)

= (9a\(^2\) + 4b\(^2\))(9a\(^2\) - 4b\(^2\))

N:B 9a\(^2\) - 4b\(^2\) = (3a - 2b)(3a + 2b)

952.

Without using tables find the numerical value of log749 + log7(\(\frac{1}{7}\))

A.

1

B.

2

C.

3

D.

7

E.

9

Correct answer is A

log749 + log7\(\frac{1}{7}\)

= log77

= 1

953.

If \((\frac{2}{3})^{m} (\frac{3}{4})^{n} = \frac{256}{729}\), find the values of m and n.

A.

m = 4, n = 2

B.

m = -4, n = -2

C.

m = -4, n =2

D.

m = 4, n = -2

E.

m = -2, n = 4

Correct answer is D

(\(\frac{2}{3}\))m (\(\frac{3}{4}\))n = \(\frac{256}{729}\)

\(\frac{2^m}{4^n}\) x \(\frac{3^n}{3^m}\) = \(\frac{2^{8}}{3^{6}}\)

\(2^{m} \div 2^{2n} = 2^{8}; 3^{n} \div 3^{m} = 3^{-6}\)

m - 2n = 8........(i)

-m + n = -6........(ii)

Solving the equations simultaneously

m = 4, n = -2

954.

If a rod of length 250cm is measured as 255cm long in error, what is the percentage error in the measurement?

A.

55

B.

10

C.

5

D.

4

E.

2

Correct answer is E

% error = \(\frac{\text{Actual error}}{\text{real value}}\) x 100

= \(\frac{5}{250}\) x 100

= 2%

955.

Correct each of the numbers 59.81798 and 0.0746829 to three significant figures and multiply them, giving your answer to three significant figures

A.

4.46

B.

4.48

C.

4.47

D.

4.49

E.

4.50

Correct answer is C

59.81798 = 59.8(3 s.f)

0.0746829 = 0.0747

59.8 x 0.0747 = 4.46706

= 4.47(3s.f)