If (x + 2) and (x - 1) are factors of the expression Lx3+2kx2+24, find the values of L and k.
L = -6, k = -9
L = -2, k = 1
k = -1, L = -2
L = 0, k = 1
k = 0,L = 6
Correct answer is A
f(x) = Lx3 + 2kx2 + 24
f(-2) = -8L + 8k = -24
4L - 4k = 12
f(1):L + 2k = -24
L - 4k = 3
3k = -27
k = -9
L = -6
If 0.0000152 x 0.042 = A x 108, where 1 ≤ A < 10, find A and B
A = 9, B = 6.38
A = 6.38, B = -9
A = -6.38, B = -9
A = -9, B = -6.38
Correct answer is B
0.0000152 x 0.042 = A x 108
1 ≤ A < 10, it means values of A includes 1 - 9
0.0000152 = 1.52 x 10-5
0.00042 = 4.2 x 10-4
1.52 x 4.2 = 6.384
10-5 x 10-4
= 10-5-4
= 10-9
= 6.38 x 10-9
A = 6.38, B = -9
Given that cos z = L , whrere z is an acute angle, find an expression for cotz−csczsecz+tanz
1−L1+L
L2√31+L
1+L3L2
L(L−1)1−L+1√1−L2
Correct answer is D
Given Cos z = L, z is an acute angle
cot z - cosec zsec z + tan z = cos z
= cos zsin z
cosec z = 1sin z
cot z - cosec z = cos zsin z - 1sin z
cot z - cosec z = L−1sin z
sec z = 1cos z
tan z = sin zcos z
sec z = 1cos z + sin zcos z
= 1l + sin zL
the original eqn. becomes
cot z - cosec zsec z + tan z = L−1sin z1+sinzL
= L(L−1)sin z(1+sin z)
= L(L−1)sin z+1−cos2z
= sin z + 1
= 1 + √1−L2
= L(L−1)1−L+1√1−L2
In a figure, PQR = 60o, PRS = 90o, RPS = 45o, QR = 8cm. Determine PS
2√3cm
4√6cm
2√6cm
8√6cm
8cm
Correct answer is B
From the diagram, sin 60o = PR8
PR = 8 sin 60 = 8√32
= 4√3
Cos 45o = PRPS = 4√3PS
PS Cos45o = 4√3
PS = 4√3 x 2
= 4√6
Solve the following equations 4x - 3 = 3x + y = x - y = 3, 3x + y = 2y + 5x - 12
x = 5, y = 2
x = 2, y = 5
x = 5, y = -2
x = -2, y = -5
x = -5, y = -2
Correct answer is A
4x - 3 = 3x + y = x - y = 3.......(i)
3x + y = 2y + 5x - 12.........(ii)
eqn(ii) + eqn(i) 3x = 15
x = 5
substitute for x in equation (i)
5 - y = 3
y = 2