If b = a + cp and r = ab + \(\frac{1}{2}\)cp2, express b2 in terms of a, c, r.
b2 = aV + 2cr
b2 = ar + 2c2r
b2 = a2 = \(\frac{1}{2}\) cr2
b2 = \(\frac{1}{2}\)ar2 + c
b2 = 2cr - a2
Correct answer is E
b = a + cp....(i)
r = ab + \(\frac{1}{2}\)cp2.....(ii)
expressing b2 in terms of a, c, r, we shall first eliminate p which should not appear in our answer from eqn, (i)
b - a = cp = \(\frac{b - a}{c}\)
sub. for p in eqn.(ii)
r = ab + \(\frac{1}{2}\)c\(\frac{(b - a)^2}{\frac{ab + b^2 - 2ab + a^2}{2c}}\)
2cr = 2ab + b2 - 2ab + a2
b2 = 2cr - a2
Simplify T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\)
\(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)
\(\frac{R_1 R_2 R_3}{R_2R_3 + R_1R_2 + 4R_1 R_2}\)
\(\frac{16R_1 R_2 R_3}{R_2R_3 + R_1R_2 + R_1 R_2}\)
\(\frac{4R_1 R_2 R_3}{4R_2R_3 + R_1R_2 + 4R_1 R_2}\)
Correct answer is A
T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\) = \(\frac{4R_2}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{4}{R_3}}\)
= \(\frac{4R_2}{\frac{R_2R_3 + R_1R_3 + 4R_1R_2}{R_1R_2R_3}}\)
= \(\frac{4R_2 \times R_1 R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)
= \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1R_2}\)
T = \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)
12
27
9
4
36
Correct answer is C
1st term a = 3, 5th term = 9, sum of n = 81
nth term = a + (n - 1)d, 5th term a + (5 - 1)d = 9
3 + 4d = 9
4d = 9 - 3
d = \(\frac{6}{4}\)
= \(\frac{3}{2}\)
= 6
Sn = \(\frac{n}{2}\)(6 + \(\frac{3}{4}\)n - \(\frac{3}{2}\))
81 = \(\frac{12n + 3n^2}{4}\) - 3n
= \(\frac{3n^2 + 9n}{4}\)
3n2 + 9n = 324
3n2 + 9n - 324 = 0
By almighty formula positive no. n = 9
= 3
Show that \(\frac{\sin 2x}{1 + \cos x}\) + \(\frac{sin2 x}{1 - cos x}\) is
sin x
cos2x
2
3
Correct answer is C
\(\frac{\sin^{2} x}{1 + \cos x} + \frac{\sin^{2} x}{1 - \cos x}\)
\(\frac{\sin^{2} x (1 - \cos x) + \sin^{2} x (1 + \cos x)}{1 - \cos^{2} x}\)
= \(\frac{\sin^{2} x - \cos x \sin^{2} x + \sin^{2} x + \sin^{2} x \cos x}{\sin^{2} x}\)
(Note: \(\sin^{2} x + \cos^{2} x = 1\)).
= \(\frac{2 \sin^{2} x}{\sin^{2} x}\)
= 2.
\(\frac{2P}{\pi}\)
\(\frac{P}{\sqrt{\pi}}\)
\(\frac{P}{\sqrt{2\pi}}\)
2\(\frac{P}{\pi}\)
Correct answer is D
Surface area of a sphere = 4\(\pi\)r2
\(\frac{1}{16}\) of 4\(\pi\)r2
= \(\frac{\pi r^2}{4}\)
P = \(\frac{\pi r^2}{4}\)
r = 2\(\frac{P}{\pi}\)