JAMB Mathematics Past Questions & Answers - Page 166

826.

Simplify 102 + log105

A.

500

B.

2 log10 5

C.

10

D.

25

E.

log105 x 10100

Correct answer is E

102 + log105 = log10 10100 + log105

= log105 x 10100

827.

Given log 2 = 0.69, log3 = 1, 10 and log7 = 1.90, all to a fixed base, find log 10.5 to the same base without using tables.

A.

1.03

B.

2.31

C.

3.69

D.

10.5

E.

25

Correct answer is B

log 10.5 = log \(\frac{21}{2}\)

= log 21 - log 2

= log(3 x 7) - log 2

= log 3 + log 7 - log 2

= 1.10 + 1.90 - 0.69

= 3 - 0.69

= 2.31

828.

Solve the equation for the positive values of \(\theta\) less than 360o. 3 tan \(\theta\) + 2 = -1

A.

135o or 315o

B.

45o or 135o

C.

315o or 180o

D.

315v + 45o

E.

360o or 315o

Correct answer is A

3 tan \(\theta\) + 2 = -1

3 tan \(\theta\) \(\frac{-3}{3}\) = -1

\(\theta\) = tan -1(-1)

\(\theta\) = 360o - 45o

= 315o

\(\theta\) = 180 - 45o = 135o

829.

Find the area of the curved surface of a cone whose base radius is 6cm and whose height is 8cm. (take \(\pi\) = \(\frac{22}{7}\))

A.

188.57cm2

B.

1320cm2

C.

188cm2

D.

188.08cm2

E.

10cm2

Correct answer is A

S = curved surface area = \(\pi\)rL

= \(\frac{22}{7}\) x 6 x 10

= 188.57cm2

830.

Simplify the given expression \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)

A.

\(\frac{1 - cos x}{sin x}\)

B.

1 - cos x

C.

sin x

D.

1 + cos x

E.

\(\frac{1 + cos x}{sin x}\)

Correct answer is A

\(\sqrt{\frac{1 - cos x}{1 + cos x}}\) = a

a2 = \(\frac{1 - cosx}{1 + cosx}\)

\(\frac{1 - cosx}{1 + cosx}\) = \(\frac{1 - cosx}{1 - cosx}\)

= \(\frac{(1 - cosx)^2}{cos^2 x}\)

a2 = \(\frac{(1 - cos x)^2}{sin^2 x}\)

a = \(\frac{1 - cos x}{sin x}\)