500
2 log10 5
10
25
log105 x 10100
Correct answer is E
102 + log105 = log10 10100 + log105
= log105 x 10100
1.03
2.31
3.69
10.5
25
Correct answer is B
log 10.5 = log \(\frac{21}{2}\)
= log 21 - log 2
= log(3 x 7) - log 2
= log 3 + log 7 - log 2
= 1.10 + 1.90 - 0.69
= 3 - 0.69
= 2.31
Solve the equation for the positive values of \(\theta\) less than 360o. 3 tan \(\theta\) + 2 = -1
135o or 315o
45o or 135o
315o or 180o
315v + 45o
360o or 315o
Correct answer is A
3 tan \(\theta\) + 2 = -1
3 tan \(\theta\) \(\frac{-3}{3}\) = -1
\(\theta\) = tan -1(-1)
\(\theta\) = 360o - 45o
= 315o
\(\theta\) = 180 - 45o = 135o
188.57cm2
1320cm2
188cm2
188.08cm2
10cm2
Correct answer is A
S = curved surface area = \(\pi\)rL
= \(\frac{22}{7}\) x 6 x 10
= 188.57cm2
Simplify the given expression \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)
\(\frac{1 - cos x}{sin x}\)
1 - cos x
sin x
1 + cos x
\(\frac{1 + cos x}{sin x}\)
Correct answer is A
\(\sqrt{\frac{1 - cos x}{1 + cos x}}\) = a
a2 = \(\frac{1 - cosx}{1 + cosx}\)
\(\frac{1 - cosx}{1 + cosx}\) = \(\frac{1 - cosx}{1 - cosx}\)
= \(\frac{(1 - cosx)^2}{cos^2 x}\)
a2 = \(\frac{(1 - cos x)^2}{sin^2 x}\)
a = \(\frac{1 - cos x}{sin x}\)