0.200 cms\(^{-1}\)
0.798 cms\(^{-1}\)
0.300 cms\(^{-1}\)
0.299 cms\(^{-1}\)
Correct answer is D
Area of a circle (A) = \(\pi r^2\)
Given
\(\frac{dA}{dt} = 1.5cm^2s^{-1}\)
\(\frac{dr}{dt}\) = ?
A = 2cm\(^2\)
Now
2 = \(\pi r^2\)
= r\(^2 = \frac {2}{\pi}\)
r = \(\sqrt \frac {2}{\pi}\) cm = 0.798cm
\(\frac {dr}{dt} = \frac {dA}{dt} \times \frac {dr}{dt}\)
\(\frac {dA}{dr} = 2\pi r\) (differentiating A = \(\pi r^2)\)
\(\frac {dr}{dA} = \frac {1}{2\pi r}\)
\(\frac {dr}{dt} = 1.5 \times \frac {1}{2\times \pi \times 0.798} = 1.5 \times 0.199\)
\(\frac {dr}{dt} = 0.299cms^{-1}\) (to 3 s.f)
dodecagon
enneadecagon
icosagon
hendecagon
Correct answer is A
An interior angle of a regular polygon = \(\frac{(2n-4)\times 90}{n}\)
An exterior angle of a regular polygon = \(\frac{360}{n}\)
\(\frac{(2n-4)\times 90}{n}\) =5 \(\times\) \(\frac{360}{n}\) (Given)
= (2n-4) x 90 = 5 x 360
= 180n - 360 = 1800
= 180n = 1800 + 360
= 180n = 2160
= n = \(\frac{2160}{180}\) = 12
The polygon has 12 sides which is dodecagon
Evaluate \(\int_0^1 4x - 6\sqrt[3] {x^2}dx\)
- \(\frac{5}{8}\)
- \(\frac{8}{5}\)
\(\frac{8}{5}\)
\(\frac{5}{8}\)
Correct answer is B
\(\int_0^1 4x - 6^3\sqrt x^2\) dx
=\(\int_0^1 4x - 6x^{2/3}\) dx
=\((2x^2 - \frac{8x^{5/3}}{5})_0^1\)
=\((2(1)^2 - \frac{18(1)^{5/3}}{5}) - (2(0)^2 - \frac{18(0)^{5/3}}{5}\)
= - \(\frac{8}{5}\) - 0
- \(\frac{8}{5}\)
Evaluate: 16\(^{0.16}\) × 16\(^{0.04}\) × 2\(^{0.2}\)
2
0
2\(^0\)
\(\frac{1}{2}\)
Correct answer is A
16\(^{0.16}\) × 16\(^{0.04}\) × 2\(^{0.2}\)
=2\(^{4(0.16)}\) × 2\(^{4(0.04)}\) × 2\(^{0.2}\)
=2\(^{0.64}\) × 2\(^{0.16}\) × 2\(^{0.2}\)
=2\(^{0.64\times0.16\times0.2}\)
=2\(^1\)
2
If √24 + √96 - √600 = y√6, find the value of y
4
2
-2
-4
Correct answer is D
√24 + √96 - √600 = y√6
convert all to basic surds
√24 = 2√6
√96 = 4√6
- √600 = -10√6
2√6 + 4√6 - 10√6 = -4√6
value of y = -4