The ages of students in a small primary school were recorded in the table below.
Age | 5 - 6 | 7 - 8 | 9 -10 |
Frequency | 29 | 40 | 38 |
Estimate the mean
7.7
7.5
7.8
7.6
Correct answer is A
Class Interval | Class Mark | Frequency (f) | fx |
5 - 6 | 5.5 | 29 | 5.5 x 29 = 159.5 |
7 - 8 | 7.5 | 40 | 7.5 x 40 = 300 |
9 - 10 | 9.5 | 38 | 9.5 x 38 = 361 |
∑f=107 | ∑fx=820.5 |
Mean = ∑fx∑f=820.5107 = 7.7 (1 d.p)
Evaluate the following limit: limx→2x2+4x−12x2−2x
4
8
0
2
Correct answer is A
limx→2x2+4x−12x2−2x = limx→2(x−2)(x+6)x(x−2)
limx→2x+6x
2+62=82 = 4
15 years
25 years
20 years
30 years
Correct answer is C
Amount (A) = Principal (P) + Interest (I) i.e. A = P + I
1 = PTR100
A = 3P; T = 10 years (Given)
Since A = P + I
⟹3P=P+P×10×R100
⟹3P=P+10PR100
⟹3P=P+PR10
⟹3P−P=PR10
⟹2P=PR10
⟹2P1=PR10
⟹ PR = 20P
∴ R = 20%
Since the rate stays the same
A = 5P; R = 20%;T =?; A =P + I
\implies 5P = P + \frac {p \times T \times 20}{100}
\implies 5P - P = \frac {2PT}{10}
\implies 4P = \frac {2PT}{10}
\implies 2P = \frac {PT}{10}
\implies PT = 20P
\therefore T = 20 years
Find the value of t, if the distance between the points P(–3, –14) and Q(t, –5) is 9 units.
3
2
-3
-2
Correct answer is C
Let the given points be:
P(-3, -14) = (x_1, y_1)
Q(t, -5) = (x_2, y_2)
PQ = 9 units (given)
Using the distance formula,
d = √ [ (x_2 - x_1)^2 + (y_2 - y_1)^2]
PQ = √ [ (t - (-3))^2 + (-5 + 14)^2]
\implies √ [ (t + 3)^2 + 81] = 9
Squaring on both sides,
⇒ (t + 3)^2 + 81 = 81
⇒ (t + 3)^2 = 0
⇒ t + 3 = 0
∴ t = -3
If \frac {3 - \sqrt 3}{2 + \sqrt 3} = a + b\sqrt 3, what are the values a and b?
a = 9, b = -5
a = 5, b = 9
a = 9, b = 5
a = -5, b = 9
Correct answer is A
\frac {3 - \sqrt 3}{2 + \sqrt 3} = a + b\sqrt 3
Rationalize
= \frac {3 - \sqrt 3}{2 + \sqrt 3} \times \frac {2 - \sqrt 3}{2 - \sqrt 3}
= \frac {(3 - \sqrt 3)}{(2 + \sqrt 3)} \frac {(2 - \sqrt 3)}{(2 - \sqrt 3)}
= \frac {6 - 3 \sqrt 3 - 2 \sqrt 3 + (\sqrt 3)^2}{4 - 2 \sqrt 3 + 2 \sqrt 3 - (\sqrt 3)^2}
= \frac {6 - 5 \sqrt 3 + 3}{4 - 3}
= \frac {9 - 5 \sqrt 3}{1} = 9 - 5 \sqrt 3
= 9 + (-5) \sqrt 3
\therefore a = 9, b = - 5