\(\frac{1}{3}\)
\(\frac{1}{6}\)
\(\frac{2}{3}\)
1
Correct answer is C
\(^{3n}C_{2} > 0 \implies \frac{3n!}{(3n - 2)! 2!} > 0\)
\(\frac{3n(3n - 1)(3n - 2)!}{(3n - 2)! 2} > 0\)
\(\frac{3n(3n - 1)}{2} > 0\)
\(3n(3n - 1) > 0 \implies n > 0; n > \frac{1}{3}\)
The least number in the option that satisfies \(n > 0; n > \frac{1}{3} = \frac{2}{3}\)
Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)...
If \((x - 5)\) is a factor of \(x^3 - 4x^2 - 11x + 30\), find the remaining factors....
Find the stationary point of the curve \(y = 3x^{2} - 2x^{3}\)....
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....
Find \(\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12}\)...