\(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + 2
\(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\)
\(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\) + 2
\(\frac{2}{3}\)\(\sqrt{5}\) - \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\) + 2
Correct answer is C
\(\frac{(\sqrt{5} + 3)(4 + \sqrt{10})}{(4 - \sqrt{10})(4 + \sqrt{10})}\)
= \(\frac{4\sqrt{5} + \sqrt{50} + 12 + 3\sqrt{10}}{4^2 - (\sqrt{10})^2}\)
= \(\frac{4\sqrt{5} + 5\sqrt{2} + 12 + 3\sqrt{10}}{16 - 10}\)
= \(\frac{4 \sqrt{5}}{6} + \frac{5 \sqrt{2}}{6} + \frac{12}{6} + \frac{3\sqrt{10}}{6}\)
= \(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\) + 2
Find the acute angle between the lines 2x + y = 4 and -3x + y + 7 = 0. ...
If \(f(x) = mx^{2} - 6x - 3\) and \(f'(1) = 12\), find the value of the constant m....
Find the inverse of \(\begin{pmatrix} 4 & 2 \\ -3 & -2 \end{p...
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
If \(f(x) = \frac{1}{2 - x}, x \neq 2\), find \(f^{-1}(-\frac{1}{2})\)....
Find the coefficient of \(x^{4}\) in the binomial expansion of \((2 + x)^{6}\)...