3, \(\frac{-1}{3}\), 5
\(\frac{-1}{3}\), 3, 5
3, \(\frac{-1}{3}\), 3
3, \(\frac{-1}{3}\), 3
Correct answer is D
log\(_5\) (\(\frac{125x^3}{\sqrt[3] {y}}\))
= \(\log_5 125 x^3 - \log _1 x^3 - log_5 y\frac{1}{3}\)
= \(3 log_5 5 + 3 log_5 x - \frac{1}{3} log _5 y\)
= 3, - \(\frac{1}{3}\), 3
Evaluate \(\int^1_0 x(x^2-2)^2 dx\)...
Differentiate \(x^{2} + xy - 5 = 0\)...
If \(P = {x : -2 < x < 5}\) and \(Q = {x : -5 < x < 2}\) are subsets of \(\mu = {x : -5 ...
If\((\frac{1}{9})^{2x-1} = (\frac{1}{81})^{2-3x}\)find the value of x...
Evaluate tan 75\(^o\); leaving the answer in surd form (radicals) ...
Find the sum of the first 20 terms of the sequence -7-3, 1, ...... ...