\(x^{2} + 10x + c\)
\(x + \frac{5}{3}x^{3} + x^{4} + c\)
\(x - 5x^{2} - 2x^{3} + c\)
\(x - \frac{5}{x} - \frac{1}{2x^{2}} + c\)
Correct answer is D
\(\frac{x^{3} + 5x + 1}{x^{3}} \equiv 1 + \frac{5}{x^{2}} + \frac{1}{x^{3}}\)
\(\equiv \int (1 + \frac{5}{x^{2}} + \frac{1}{x^{3}}) \mathrm {d} x = \int (1 + 5x^{-2} + x^{-3}) \mathrm {d} x\)
= \((x - 5x^{-1} - \frac{1}{2}x^{-2} + c)\)
= \(x - \frac{5}{x} - \frac{1}{2x^{2}} + c\).
Express cos150° in surd form. ...
Simplify \(\frac{^{n}P_{5}}{^{n}C_{5}}\)...
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)....
If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
A particle starts from rest and moves in a straight line such that its velocity, V ms\(^{-1}\),...
Which of the following is the same as \(\sin (270 + x)°\)?...