12
15
10
14
Correct answer is D
each interior angle of a polygon = \(\frac{(n - 2)\times 180}{n}\) where n = no of side of a polygon
each exterior angle of a polygon = \(\frac{360}{n}\)
then \(\frac{(n - 2)\times 180}{n}\) = 6\(\times\) \(\frac{360}{n}\)
= (n - 2) 180 = 2160
= 180n - 360 = 2160
= 180n = 2160 + 360
= 180n = 2520
therefore, n = \(\frac{2520}{180}\) = 14.
If \(\frac{1+\sqrt{2}}{1-\sqrt{2}}\) is expressed in the form of x+y√2 find the values of ...
Evaluate 64.764\(^2\) - 35.236\(^2\) correct to 3 significant figures...
If 2\(^{a}\) = \(\sqrt{64}\) and \(\frac{b}{a}\) = 3, evaluate a\(^2 + b^{2}\) ...
Make T the subject of the equation \(\frac{av}{1 - v}\) = \(\sqrt{\frac{2v + T}{a + 2T}}\)...
In XYZ, y = z = 30° and XZ = 3cm. Find YZ...
\(\begin{array}{c|c} x & 0 & 1\frac{1}{4} & 2 & 4\\ \hline y & 3 & 5...