Simplify \(\frac{a - b}{a + b}\) - \(\frac{a + b}{a - b}\)

A.

\(\frac{4ab}{a - b}\)

B.

\(\frac{-4ab}{a^2 - b^2}\)

C.

\(\frac{-4ab}{a^{-2} - b}\)

D.

\(\frac{4ab}{a^{-2} - b^{-2}}\)

Correct answer is B

\(\frac{a - b}{a + b}\) - \(\frac{a + b}{a - b}\) = \(\frac{(a - b)^2}{(a + b)}\) - \(\frac{(a + b)^2}{(a - b0}\)

applying the principle of difference of two sqrt. Numerator = (a - b) + (a + b) (a - b) - (a + b)

= (a = b + a = b)(a = b - a = b)

2a(-2b) = -4ab

= \(\frac{-4ab}{(a + b)(a - b)}\)

= \(\frac{-4ab}{a^2 - b^2}\)