1110
10111
11101
111100
Correct answer is B
y = 23\(_{five}\) + 101\(_{three}\)
23\(_{five}\) = \(2 \times 5^1 + 3 \times 5^0\)
= 13\(_{ten}\)
101\(_{three}\) = \(1 \times 3^2 + 0 \times 3^1 + 1 \times 3^0\)
= 10\(_{ten}\)
y\(_{ten}\) = 13\(_{ten}\) + 10\(_{ten}\)
= 23\(_{ten}\)
= 10111\(_{two}\)
Simplify \(\sqrt{27}\) + \(\frac{3}{\sqrt{3}}\)...
Evaluate \(\frac{5}{8} - \frac{3}{4} ÷ \frac{5}{12} \times \frac{1}{4}\)...
If 2 log x (3\(\frac{3}{8}\)) = 6, find the value of x...
Factorize m(2a-b)-2n(b-2a) ...
For what values of x is the curve y = \(\frac{x^2 + 3}{x + 4}\) decreasing?...
If \(\frac{1+\sqrt{2}}{1-\sqrt{2}}\) is expressed in the form of x+y√2 find the values of ...