1110
10111
11101
111100
Correct answer is B
y = 23\(_{five}\) + 101\(_{three}\)
23\(_{five}\) = \(2 \times 5^1 + 3 \times 5^0\)
= 13\(_{ten}\)
101\(_{three}\) = \(1 \times 3^2 + 0 \times 3^1 + 1 \times 3^0\)
= 10\(_{ten}\)
y\(_{ten}\) = 13\(_{ten}\) + 10\(_{ten}\)
= 23\(_{ten}\)
= 10111\(_{two}\)
The number line represents ...
Using the venn diagram, find n(x \(\cap\) y1)...
Evaluate \(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\)...
If g(x) = x\(^2\) + 3x find g(x + 1) - g(x)...
Find the integral values of x and y satisfying the inequality 3y + 5x \(\leq\) 15, given that y >...
An (\(n - 2)^2\) sided figure has n diagonals. Find the number n diagonals for a 25-sided figure...