1
0
2
-1
Correct answer is A
Given: x + y = 90° ... (1)
(\sin x + \sin y)^{2} - 2\sin x \sin y = \sin^{2} x + \sin^{2} y + 2\sin x \sin y - 2\sin x \sin y
= \sin^{2} x + \sin^{2} y ... (2)
Recall: \sin x = \cos (90 - x) ... (a)
From (1), y = 90 - x ... (b)
Putting (a) and (b) in (2), we have
\sin^{2} x + \sin^{2} y \equiv \cos^{2} (90 - x) + \sin^{2} (90 - x)
= 1
Solve the system of equation 2x + y = 32, 33y - x = 27...
Find the value of m which makes x^2 + 8 + m a perfect square ...
If \begin{vmatrix}-x & 12 \\-1 & 4 \end{vmatrix} = - 12, find x....
If x =3, y = 2 and z = 4 what is the value of 3x^{2}-2y+z...
Given that p = 2, q = -5 and r = - 4, evaluate 3p2 - q2 - r3...
If (g(y)) = \frac{y - 3}{11} + \frac{11}{y^2 - 9}. what is g(y + 3)?...