1\(\frac{1}{2}\)
2
2\(\frac{1}{2}\)
3
Correct answer is A
If x : y : z = 3 : 3 : 4, evaluate \(\frac{9x + 3y}{6x - 2y}\)
\(\frac{x}{y}\) = \(\frac{2}{3}\) and \(\frac{y}{z}\) = \(\frac{3}{4}\)
Thus; x = \(\frac{2}{3}T_1\) and z = \(\frac{3}{5}T_1\)
y = \(\frac{3}{7}T_2\) and z = \(\frac{4}{7}T_2\)
Using y = y
\(\frac{3}{5}T_1\) = \(\frac{3}{7}T_2\); \(\frac{T_1}{T_2}\) = \(\frac{3}{7}\) x \(\frac{5}{3}\)
\(\frac{T_1}{T_2}\) = \(\frac{15}{21}\)
\(T_1\) = 15 and \(T_2\) = 21
Therefore;
x = \(\frac{2}{5}\) x 15 = 6
y = \(\frac{3}{5}\) x 15 = 9
y = \(\frac{3}{7}\) x 21 = 9 (again)
z = \(\frac{4}{7}\) x 21 = 12
Hence;
\(\frac{9x + 3y}{6z - 2y}\) = \(\frac{9(6) + 3(9)}{6(12) - 2(9)}\)
\(\frac{54 + 27}{72 - 18}\) = \(\frac{81}{54}\) = \(\frac{3}{2}\)
= 1\(\frac{1}{2}\)