\(\frac{1}{2}\) (a + b + c)
\(\frac{1}{2}\) (a - b - c)
\(\frac{1}{2}\) (a - b + c)
\(\frac{1}{2}\) (a + b - c)
Correct answer is A
\(\frac{1}{2}\)(a - b + c) + \(\frac{1}{2}\)(a + b - c) - [\(\frac{1}{2}\) (a - b - c)]
\(\frac{1}{2}a - \frac{1}{2}b + \frac{1}{2}c + \frac{1}{2}a + \frac{1}{2}b - \frac{1}{2}c - \frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c\)
= \(\frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c\)
= \(\frac{1}{2}(a + b + c)\)