If \(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\), find K

A.

-2

B.

-1

C.

1

D.

2

Correct answer is D

\(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\)

\(\sqrt{50} - \frac{2}{\sqrt{2}}\) = K\(\sqrt{8}\)

= \(\sqrt{2} \times 25 - \frac{2}{\sqrt{2}}\)

= K \(\sqrt{4 \times 2}\)

\(\frac{5\sqrt{2}}{1} - \frac{2}{\sqrt{2}}\) = 2K\(\sqrt{2}\)

\(\frac{5\sqrt{4} - 2}{\sqrt{2}} = 2K\sqrt{2}\)

\(\frac{10 - 2}{\sqrt{2}} = 2K \sqrt{2}\)

\(\frac{8}{\sqrt{2}} = \frac{2K\sqrt{2}}{1}\)

= 2k\(\sqrt{2} \times \sqrt{2}\) = 8

2k \(\sqrt{4}\) = 8

2k x 2 = 8

4k = 8

k = \(\frac{8}{4}\)

k = 2