\( \frac{2^3 \times 3^2}{5^3} \)
\( \frac{2^4 \times 3}{5^3} \)
\( \frac{2^3 \times 3}{5^3} \)
\( \frac{2^4 \times 3}{5^5} \)
\( \frac{2^2 \times 3^2 \times 4^2}{5^2} \)
Correct answer is A
\(\frac{72}{125} = \frac{8 \times 9}{5 \times 5 \times 5}\)
= \(\frac{2^3 \times 3^2}{5^3}\)
The locus of a point which is equidistant from the line PQ forms a ...
Solve \(\frac{1}{3}\)(5 - 3x) < \(\frac{2}{5}\)(3 - 7x)...
If y = x sin x, find \(\frac{\delta y}{\delta x}\)...
If a u2 - 3v2 and b = 2uv + v2 evaluate (2a - b)(a - b2), when u = 1 and v = -1...
If \(5^{(x + 2y)} = 5\) and \(4^{(x + 3y)} = 16\), find \(3^{(x + y)}\)....