29\(\sqrt{5}\)
14\(\sqrt{15}\)
12\(\sqrt{15}\)
11\(\sqrt{15}\)
Correct answer is A
3 \(\sqrt{45} - 12\sqrt{5} + 16\sqrt{20}\)
= 3 x \(\sqrt{9 \times 5} - 12 \times \sqrt{5} + 16 \times \sqrt{4 \times 5}\)
= 3 x 3 x \(\sqrt{5} - 12 \times \sqrt{5} + 16 \times 2 \times \sqrt{5}\)
= 9\(\sqrt{5} - 2 \sqrt{5} + 32 \sqrt{5}\)
= 9\(\sqrt{5} + 32\sqrt{5} - 12\sqrt{5}\)
= 29\(\sqrt{5}\)
(\(\frac{x^a}{x^b}\))a + b = (\(\frac{x^{a + b}}{x^{a - b}}\))\(\frac{a^2}{b}\)...
In the diagram, QRT is a straight line. If angle PTR = 90°, angle PRT = 60°, angle PQR = 30&...
Solve the equation x2 - 3x - 10 = 0...
Convert 425 to base three numeral...
Simplify \(\frac{\log \sqrt{8}}{\log 8}\) ...
In the diagram, O is the centre of the circle and < PQR = 106º, find the value of y ...
If x = 64 and y = 27, evaluate: \(\frac{x^{\frac{1}{2}} - y^{\frac{1}{3}}}{y - x^{\frac{2}{3}}}\)...