\(\frac{x}{\sqrt{y^2 - x^2}}\)
\(\frac{y}{x}\)
\(\frac{\sqrt{y^2 + x^2}}{y^2 - x^2}\)
\(\frac{y^2 - x^2}{x}\)
Correct answer is D
\(\frac{1}{tan\theta}\) = \(\frac{cos\theta}{sin\theta}\)
sin\(\theta\) = \(\frac{x}{y}\)
cos\(\theta\) = \(\frac{\sqrt{y^2 - x^2}}{y}\)