\(\frac{\sqrt{3}}{\sqrt{5}}\)
\(\frac{2 \sqrt{3}}{7}\)
-2
-1
Correct answer is D
\((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)
\(\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}\)
\(\frac{(\sqrt{5} - \sqrt{3}) - (\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}\)
= \(\frac{\sqrt{5} - \sqrt{3} - \sqrt{5} - \sqrt{3}}{5 - \sqrt{15} + \sqrt{15} - 3}\)
= \(\frac{-2\sqrt{3}}{2}\)
= \(- \sqrt{3}\)
\(\therefore (\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}} = - \sqrt{3} \times \frac{1}{\sqrt{3}}\)
= \(-1\)
Divide x3 - 2x2 - 5x + 6 by (x - 1)...
A man is five times as old as his son. In four years' time, the product of their ages would be 3...
Find the minimum value of X2 - 3x + 2 for all real values of x...
Calculate, correct to three significant figures, the length AB in the diagram above. ...
Calculate the total surface area of a cone of height 12cm and base radius 5cm. [Take π = 22/7] ...
Express 0.03785 in standard form correct to 3 significant figures. ...
A man made a loss of 15% by selling an article for N595. Find the cost price of the article ...