Given that 3x - 5y - 3 = 0, 2y - 6x + 5 = 0 the value of (x, y) is

A.

(\(\frac{-1}{8}, \frac{19}{24}\))

B.

8, \(\frac{24}{19}\)

C.

-8, \(\frac{24}{19}\)

D.

(\(\frac{19}{24}, \frac{-1}{8}\))

Correct answer is D

3x - 5y = 3, 2y - 6x = -5

-5y + 3x = 3........{i} x 2

2y - 6x = -5.........{ii} x 5

Substituting for x in equation (i)

-5y + 3(\(\frac{19}{24}\)) = 3

-5y + 3 x \(\frac{19}{24}\) = 3

-5y = \(\frac{3 - 19}{8}\)

-5 = \(\frac{24 - 19}{8}\)

= \(\frac{5}{8}\)

y = \(\frac{5}{8 \times 5}\)

y = \(\frac{-1}{8}\)

(x, y) = (\(\frac{19}{24}, \frac{-1}{8}\)