\(\sqrt{\frac{42W}{5L}}\)
\(\sqrt{\frac{6L}{42W}}\)
\(\frac{42W}{5L}\)
\(\frac{5L}{42W}\)
Correct answer is A
\(W\infty LD^2\\W=KLd^2\\K=\frac{W}{Ld^2}\\=\frac{140}{54}\times\left(4\frac{2}{3}\right)^2 \\=\frac{140}{54}\times\left(\frac{14}{3}\right)^2\\=\frac{140\times 9}{54\times 14\times 14}\\=\frac{5}{42}\\∴W=\frac{5}{42Ld^2}\\42W=5Ld^2\\\frac{42W}{5L}=d^2\\d=\sqrt{\frac{42W}{5L}}\)
This table below gives the scores of a group of students in a Further Mathematics Test. Score...
Factorize completely the expression \(abx^2 + 6y - 3ax - 2byx\)...
Find the value of y, if log (y + 8) + log (y - 8) = 2log 3 + 2log 5 ...
If the volume of a hemisphere is increasing at a steady rate of 18π m\(^{3}\) s\(^{-1}\), at what...
What value of x will make the function x(4 - x) a maximum?...
If \(log_a 3\) = m and \(log_a 5\) = p, find \(log_a 75\)...